79 research outputs found

    Metabolic responses of bacterial cells to immobilization

    Get PDF
    In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability

    Dynamics of ibuprofen biodegradation by Bacillus sp. B1(2015b)

    Get PDF
    High intake of over-the-counter, non-steroidal anti-inflammatory drugs, such as ibuprofen, has resulted in their presence in wastewaters and surface waters. The potentially harmful effect of ibuprofen present in the waters has led to a search for new methods of drugs' removal from the environment. One of the most important technological and economical solutions comprises microbiological degradation of these resistant pollutants. Searching for new strains able to degrade ibuprofen could be one of the answers for increasing the detection of pharmaceuticals in the waters. In this study, the ability of bacterial strain Bacillus thuringiensis B1(2015b) to remove ibuprofen is described. Bacteria were cultured in both monosubstrate and cometabolic systems with 1, 3, 5, 7 and 9 mg L-1 ibuprofen and 1 g L-1 glucose as a carbon source. Bacillus thuringiensis B1(2015b) removed ibuprofen up to 9 mg L-1 in 232 hours in the monosubstrate culture, whereas in the cometabolic culture the removal of the drug was over 6 times faster. That is why the examined strain could be used to enhance the bioremediation of ibuprofen

    Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in environment-sources, risks, biodegradation

    Get PDF
    Recently, the increased use of monocyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This may have potential negative effects on living organisms. The biotransformation mechanisms of monocyclic nonsteroidal anti-inflammatory drugs in the human body and in other mammals occur by hydroxylation and conjugation with glycine or glucuronic acid. Biotransformation/biodegradation of monocyclic non-steroidal anti-inflammatory drugs in the environment may be caused by fungal or bacterial microorganisms. Salicylic acid derivatives are degraded by catechol or gentisate as intermediates which are cleaved by dioxygenases. The key intermediate of the paracetamol degradation pathways is hydroquinone. Sometimes, after hydrolysis of this drug, 4- aminophenol is formed, which is a dead-end metabolite. Ibuprofen is metabolized by hydroxylation or activation with CoA, resulting in the formation of isobutylocatechol. The aim of this work is to attempt to summarize the knowledge about environmental risk connected with the presence of over-the-counter antiinflammatory drugs, their sources and the biotransformation and/or biodegradation pathways of these drugs

    Influence of additional carbon sources on chlorophenols degradation by strain Pseudomonas sp

    Get PDF
    Szczep Pseudomonas sp. wykazywał zdolność do rozkładu wybranych chlorofenoli, jednak nie obserwowano wzrostu hodowli bakteryjnej w trakcie prowadzenia badań. W podjętych badaniach sprawdzono wpływ obecności dodatkowego źródła węgla na proces degradacji dichlorofenoli i pentachlorofenolu przez szczep Pseudomonas sp. Wykazano wzrost szybkości degradacji dichlorofenoli w obecności glukozy lub ekstraktu drożdżowego w porównaniu z hodowlami bez dodatkowego źródła węgla. Odmienne wyniki uzyskano w badaniach nad szybkością degradacji PCP w obecności dodatkowego źródła węgla. Dodanie ekstraktu drożdżowego nie zmieniło szybkości degradacji pentachlorofenolu w porównaniu z hodowlą bez dodatkowego źródła węgla. Obecność glukozy lub cytrynianu sodu do pożywki hamowało rozkład pentachlorofenolu. Abstrac

    Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs

    Get PDF
    In recent years the increased use of polycyclic non-steroidal anti-inflammatory drugs has resulted in their presence in the environment. This in turn may cause potential negative effects on living organisms. While the biotransformation mechanisms of polycyclic non-steroidal anti-inflammatory drugs in the human body and in other mammals have been extensively studied, degradation of these drugs by microorganisms has seldom been investigated and is largely unknown. Biotransformation/biodegradation of polycyclic non-steroidal anti-inflammatory drugs is caused by fungal microorganisms, mainly white-rot fungi, and a few strains of bacteria. However, hitherto only complete degradation of olsazine was described. The first step of the transformation is most often hydroxylation catalyzed by cytochrom P-450 monooxygenases, or oxygenation by laccases and three peroxidases: lignin peroxidase, manganese-dependent peroxidase and versatile peroxidase manganese-dependent peroxidase. The aim of this work is to summarize the knowledge about the biotransformation and/or biodegradation of polycyclic non-steroidal anti-inflammatory drugs and to present their biotransformation pathways

    Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases

    Get PDF
    The main objective of the immobilization of enzymes is to enhance the economics of biocatalytic processes. Immobilization allows one to re-use the enzyme for an extended period of time and enables easier separation of the catalyst from the product. Additionally, immobilization improves many properties of enzymes such as performance in organic solvents, pH tolerance, heat stability or the functional stability. Increasing the structural rigidity of the protein and stabilization of multimeric enzymes which prevents dissociation-related inactivation. In the last decade, several papers about immobilization methods have been published. In our work, we present a relation between the influence of immobilization on the improvement of the properties of selected oxidoreductases and their commercial value. We also present our view on the role that different immobilization methods play in the reduction of enzyme inhibition during biotechnological processes

    Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment

    Get PDF
    From 2019, life in the world has mainly been determined by successive waves of the COVID-19 epidemic. During this time, the virus structure, action, short- and long-term effects of the infection were discovered, and treatments were developed. This epidemic undoubtedly affected people's lives, but increasing attention is also being paid to the effects of the epidemic on the environment. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines, a global scoping review of peer-reviewed information has been conducted on the use of over-the-counter non-steroidal anti-inflammatory drugs in the treatment of symptoms of SARS-CoV-2 infections and their positive andnegativeeffectsonthehumanbody,the effectsof non-steroidal anti-inflammatory drugs (NSAIDs) on aquatic organisms, and their adverse effects on non-target organisms. The literature from 1998 to 2021 was analysed using the Scopus®, Web of Science™ (WoS) and Google Scholar databases. As non-steroidal anti-inflammatory drugs place a heavy burden on the environment, all reports of the presence of these drugs in the environment during the pandemic period have been thoroughly analysed. Of the 70 peer-reviewed records within the scope, only 14% (n = 10) focussed on the analysis of non-steroidal anti-inflammatory drugs concentrations in wastewater and surface waters during the pandemic period. The percentage of these works indicates that it is still an open topic, and this issue should be supplemented with further reports in which the results obtained during the pandemic, which has been going on for several years, will be published. The authors hope this review will inspire scientists to investigate the problem of non-steroidal anti-inflammatory drugs in the environment to protect them for the next generation

    Activity of a carboxyl-terminal truncated form of catechol 2,3-dioxygenase from Planococcus sp S5

    Get PDF
    Catechol 2,3-dioxygenases (C23Os, E.C.1.13.12.2) are two domain enzymes that catalyze degradation of monoaromatic hydrocarbons. The catalytically active C-domain of all known C23Os comprises ferrous ion ligands as well as residues forming active site pocket. The aim of this work was to examine and discuss the effect of nonsense mutation at position 289 on the activity of catechol 2,3-dioxygenase from Planococcus strain. Although the mutant C23O showed the same optimal temperature for activity as the wild-type protein (35°C), it exhibited activity slightly more tolerant to alkaline pH. Mutant enzyme exhibited also higher affinity to catechol as a substrate. Its K m (66.17 μM) was approximately 30% lower than that of wild-type enzyme. Interestingly, removal of the C-terminal residues resulted in 1.5- to 1.8-fold (P < 0.05) increase in the activity of C23OB61 against 4-methylcatechol and 4-chlorocatechol, respectively, while towards catechol the activity of the protein dropped to about 80% of that of the wild-type enzyme. The results obtained may facilitate the engineering of the C23O for application in the bioremediation of polluted areas

    Altering substrate specificity of catechol 2,3-dioxygenase from Planococcus sp. strain S5 by random mutagenesis

    Get PDF
    c23o gene, encoding catechol 2,3-dioxygenase from Planococcus sp. strain S5 was randomly mutagenized to generate variant forms of the enzyme with higher degradation activity. Additionally, the effect of introduced mutations on the enzyme structure was analyzed based on the putative 3D models the wild-type and mutant enzymes. C23OB58 and C23OB81 mutant proteins with amino acid substitutions in close proximity to the enzyme surface or at the interface and in the vicinity of the enzyme active site respectively showed the lowest activity towards all catecholic substrates. The relative activity of C23OC61 mutant towards para-substituted catechols was 20–30% lower of the wild-type enzyme. In this mutant all changes: F191I, C268R, Y272H, V280A and Y293D were located within the conserved regions of C-terminal domain. From these F191I seems to have significant implications for enzyme activity. The highest activity towards different catechols was found for mutant C23OB65. R296Q mutation improved the activity of C23O especially against 4-chlorocatechol. The relative activity of above-mentioned mutant detected against this substrate was almost 6-fold higher than the wildtype enzyme. These results should facilitate future engineering of the enzyme for bioremediation
    corecore