61 research outputs found

    Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine KrasG12D-induced skin carcinogenesis in vivo

    Get PDF
    Background The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic KrasG12D mice with ablation of Notch1 and/or Notch2. Methodology/Principal Findings Surprisingly, mice with activated KrasG12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. Conclusions/Significance Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors

    Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-κB pathway and promotes lymphomagenesis

    Get PDF
    CD40, a member of the tumor necrosis factor (TNF) receptor family, plays an essential role in T cell–dependent immune responses. Because CD40 is widely expressed on the surface of tumor cells in various B cell malignancies, deregulated CD40 signaling has been suggested to contribute to lymphomagenesis. In this study, we show that B cell-specific expression of a constitutively active CD40 receptor, in the form of a latent membrane protein 1 (LMP1)/CD40 chimeric protein, promoted an increase in the number of follicular and marginal zone B cells in secondary lymphoid organs in transgenic mice. The B cells displayed an activated phenotype, prolonged survival and increased proliferation, but were significantly impaired in T cell-dependent immune responses. Constitutive CD40 signaling in B cells induced selective and constitutive activation of the noncanonical NF-κB pathway and the mitogen-activated protein kinases Jnk and extracellular signal–regulated kinase. LMP1/CD40-expressing mice older than 12 mo developed B cell lymphomas of mono- or oligoclonal origin at high incidence, thus showing that the interplay of the signaling pathways induced by constitutive CD40 signaling is sufficient to initiate a tumorigenic process, ultimately leading to the development of B cell lymphomas

    Regulation of monocyte cell fate by blood vessels mediated by Notch signalling

    Get PDF
    A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation

    Regulation of monocyte cell fate by blood vessels mediated by Notch signalling

    Get PDF
    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation

    The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma

    Get PDF
    Peripheral T cell lymphomas (PTCLs) are highly aggressive malignancies with poor prognosis. Their molecular pathogenesis is not well understood and small animal models for the disease are lacking. Recently, the chromosomal translocation t(5;9)(q33;q22) generating the interleukin-2 (IL-2)–inducible T cell kinase (ITK)–spleen tyrosine kinase (SYK) fusion tyrosine kinase was identified as a recurrent event in PTCL. We show that ITK-SYK associates constitutively with lipid rafts in T cells and triggers antigen-independent phosphorylation of T cell receptor (TCR)–proximal proteins. These events lead to activation of downstream pathways and acute cellular outcomes that correspond to regular TCR ligation, including up-regulation of CD69 or production of IL-2 in vitro or deletion of thymocytes and activation of peripheral T cells in vivo. Ultimately, conditional expression of patient-derived ITK-SYK in mice induces highly malignant PTCLs with 100% penetrance that resemble the human disease. Our work demonstrates that constitutively enforced antigen receptor signaling can, in principle, act as a powerful oncogenic driver. Moreover, we establish a robust clinically relevant and genetically tractable model of human PTCL

    Restricted Expression of Epstein-Barr Virus Latent Genes in Murine B Cells Derived from Embryonic Stem Cells

    Get PDF
    Background: Several human malignancies are associated with Epstein-Barr virus (EBV) and more than 95 % of the adult human population carries this virus lifelong. EBV efficiently infects human B cells and persists in this cellular compartment latently. EBV-infected B cells become activated and growth transformed, express a characteristic set of viral latent genes, and acquire the status of proliferating lymphoblastoid cell lines in vitro. Because EBV infects only primate cells, it has not been possible to establish a model of infection in immunocompetent rodents. Such a model would be most desirable in order to study EBV’s pathogenesis and latency in a suitable and amenable host. Methodology/Principal Findings: We stably introduced recombinant EBV genomes into mouse embryonic stem cells and induced their differentiation to B cells in vitro to develop the desired model. In vitro differentiated murine B cells maintained the EBV genomes but expression of viral genes was restricted to the latent membrane proteins (LMPs). In contrast to human B cells, EBV’s nuclear antigens (EBNAs) were not expressed detectably and growth transformed murine B cells did not arise in vitro. Aberrant splicing and premature termination of EBNA mRNAs most likely prevented the expression of EBNA genes required for B-cell transformation. Conclusions/Significance: Our findings indicate that fundamental differences in gene regulation between mouse and ma

    PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice.

    Get PDF
    B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology

    Activated Notch1 Modulates Gene Expression in B Cells Similarly to Epstein-Barr Viral Nuclear Antigen 2

    No full text
    Both Epstein-Barr viral nuclear antigen 2 (EBNA2) and activated Notch transactivate genes by interacting with the transcription factor RBP-Jκ. The viral protein EBNA2 may hence be regarded as a functional equivalent of an activated Notch receptor. Until now, nothing has been known about the physiological role of Notch signaling in B cells. Here we investigated whether activated Notch can induce the same phenotypic changes as EBNA2 in Burkitt's lymphoma cells. An estrogen receptor fusion protein of the intracellular part of mouse Notch 1 (mNotch1-IC), mimicking in the presence of estrogen a constitutively active Notch receptor, was stably transfected into the Burkitt's lymphoma cell lines BL41-P3HR1 and HH514. Northern blot analysis revealed that the LMP2A gene is induced by Notch-IC in the presence of estrogen, whereas increased expression of LMP1 could be detected only if cycloheximide was simultaneously added. Concerning the cellular genes regulated by EBNA2, Notch-IC was able to upregulate CD21 but not CD23 expression. Immunoglobulin μ (Igμ) expression, which is downregulated by EBNA2, was also negatively regulated by Notch-IC. Similarly to EBNA2, Notch-IC was able to repress c-myc expression, which is under the control of the immunoglobulin heavy-chain locus in Burkitt's lymphoma cells with a t(8;14) translocation. The data show that Notch-IC is able to participate in gene regulation in B cells
    • …
    corecore