52 research outputs found
High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4
X-ray diffraction measurements on the sphalerite-derivatives ZnGa2Se4 and
CdGa2S4 have been performed upon compression up to 23 GPa in a diamond-anvil
cell. ZnGa2Se4 exhibits a defect tetragonal stannite-type structure (I-42m) up
to 15.5 GPa and in the range from 15.5 GPa to 18.5 GPa the low-pressure phase
coexists with a high-pressure phase, which remains stable up to 23 GPa. In
CdGa2S4, we find the defect tetragonal chalcopyrite-type structure (I-4) is
stable up to 17 GPa. Beyond this pressure a pressure-induced phase transition
takes place. In both materials, the high-pressure phase has been characterized
as a defect-cubic NaCl-type structure (Fm-3m). The occurrence of the pressure
induced phase transitions is apparently related with an increase of the cation
disorder on the semiconductors investigated. In addition, the results allow the
evaluation of the axial compressibility and the determination of the equation
of state for each compound. The obtained results are compared with those
previously reported for isomorphic digallium sellenides. Finally, a systematic
study of the pressure-induced phase transition in twenty-three different
sphalerite-related ABX2 and AB2X4 compounds indicates that the transition
pressure increases as the ratio of the cationic radii and anionic radii of the
compounds increases.Comment: 34 pages, 3 tables, 6 figure
Post-spinel transformations and equation of state in ZnGa2O4: Determination at high-pressure by in situ x-ray diffraction
Room temperature angle-dispersive x-ray diffraction measurements on spinel
ZnGa2O4 up to 56 GPa show evidence of two structural phase transformations. At
31.2 GPa, ZnGa2O4 undergoes a transition from the cubic spinel structure to a
tetragonal spinel structure similar to that of ZnMn2O4. At 55 GPa, a second
transition to the orthorhombic marokite structure (CaMn2O4-type) takes place.
The equation of state of cubic spinel ZnGa2O4 is determined: V0 = 580.1(9) A3,
B0 = 233(8) GPa, B0'= 8.3(4), and B0''= -0.1145 GPa-1 (implied value); showing
that ZnGa2O4 is one of the less compressible spinels studied to date. For the
tetragonal structure an equation of state is also determined: V0 = 257.8(9) A3,
B0 = 257(11) GPa, B0'= 7.5(6), and B0''= -0.0764 GPa-1 (implied value). The
reported structural sequence coincides with that found in NiMn2O4 and MgMn2O4.Comment: 20 pages, 4 figures, 2 Table
High-pressure effects on the optical-absorption edge of CdIn2S4, MgIn2S4, and MnIn2S4 thiospinels
The effect of pressure on the optical-absorption edge of CdIn2S4, MgIn2S4,
and MnIn2S4 thiospinels at room temperature is investigated up to 20 GPa. The
pressure dependence of their band-gaps has been analyzed using the Urbach rule.
We have found that, within the pressure-range of stability of the low-pressure
spinel phase, the band-gap of CdIn2S4 and MgIn2S4 exhibits a linear blue-shift
with pressure, whereas the band-gap of MnIn2S4 exhibits a pronounced non-linear
shift. In addition, an abrupt decrease of the band-gap energies occurs in the
three compounds at pressures of 10 GPa, 8.5 GPa, and 7.2 GPa, respectively.
Beyond these pressures, the optical-absorption edge red-shifts upon compression
for the three studied thiospinels. All these results are discussed in terms of
the electronic structure of each compound and their reported structural
changes.Comment: 18 pages, 3 figure
X-ray diffraction study on pressure-induced phase transformations and the equation of state of ZnGa2Te4
We report on high-pressure x-ray diffraction measurements up to 19.8¿GPa in zinc digallium telluride (ZnGa2Te4) at room temperature. An irreversible structural phase transition takes place at pressures above 12.1¿GPa and upon decompression a third polymorph of ZnGa2Te4 was recovered as a metastable phase at pressures below 2.9¿GPa. Rietveld refinements were carried out for the three detected polymorphs, being their possible crystal structures reported. The axial compressibilities for the low-pressure phase of ZnGa2Te4 have been determined as well as the equation of state of the low- and high-pressure phases. The reported results are compared with those available in the literature for related compounds. Pressure-induced coordination changes and transition mechanisms are also discussed. © 2013 AIP Publishing LLCResearch financed by Spain MINECO (MAT2010-21270-C04-01/04), MALTA Consolider (CSD2007-00045), Generalitat Valenciana (GVA-ACOMP-2013-1012), and Vicerrectorado de Investigacion y Desarrollo of UPV (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). Part of this work was performed at HPCAT, APS, ANL. HPCAT was supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES and NSF. APS was supported by DOE-BES (DEAC02-06CH11357) and UNLV HPSEC by U.S. DOE, NNSA (DE-FC52-06NA26274).Errandonea, D.; Kumar, R.; Gomis Hilario, O.; Manjón Herrera, FJ.; Ursaki, V.; Tiginyanu, I. (2013). X-ray diffraction study on pressure-induced phase transformations and the equation of state of ZnGa2Te4. Journal of Applied Physics. 114:2335071-2335077. https://doi.org/10.1063/1.4851735S23350712335077114Fouad, S. S., Sakr, G. B., Yahia, I. S., & Basset, D. M. A. (2011). Structural characterization and novel optical properties of defect chalcopyrite ZnGa2Te4 thin films. Materials Research Bulletin, 46(11), 2141-2146. doi:10.1016/j.materresbull.2011.06.002Sakr, G. B., Fouad, S. S., Yahia, I. S., & Abdel Basset, D. M. (2012). Memory switching of ZnGa2Te4 thin films. Journal of Materials Science, 48(3), 1134-1140. doi:10.1007/s10853-012-6850-zRashmi, & Dhawan, U. (2002). X-ray powder diffraction study of ZnGa2Te4. Powder Diffraction, 17(1), 41-43. doi:10.1154/1.1424263Xiao-Shu, J., Ying-Ce, Y., Shi-Min, Y., Shu, M., Zhen-Guo, N., & Jiu-Qing, L. (2010). Trends in the band-gap pressure coefficients and bulk moduli in different structures of ZnGa2S4, ZnGa2Se4and ZnGa2Te4. Chinese Physics B, 19(10), 107104. doi:10.1088/1674-1056/19/10/107104Hahn, H., Frank, G., Klingler, W., St�rger, A. D., & St�rger, G. (1955). Untersuchungen �ber tern�re Chalkogenide. VI. �ber Tern�re Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Zeitschrift f�r anorganische und allgemeine Chemie, 279(5-6), 241-270. doi:10.1002/zaac.19552790502Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4. Journal of Applied Physics, 113(7), 073510. doi:10.1063/1.4792495Santamaría-Pérez, D., Amboage, M., Manjón, F. J., Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., … Tiginyanu, I. M. (2012). Crystal Chemistry of CdIn2S4, MgIn2S4, and MnIn2S4 Thiospinels under High Pressure. The Journal of Physical Chemistry C, 116(26), 14078-14087. doi:10.1021/jp303164kMeenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). Crystal structure of HgGa2Se4 under compression. Materials Research Bulletin, 48(6), 2128-2133. doi:10.1016/j.materresbull.2013.02.037Marquina, J., Power, C., Grima, P., Morocoima, M., Quintero, M., Couzinet, B., … González, J. (2006). Crystallographic properties of the MnGa2Se4 compound under high pressure. Journal of Applied Physics, 100(9), 093513. doi:10.1063/1.2358826Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Rusu, E. V. (2009). Post-spinel transformations and equation of state inZnGa2O4: Determination at high pressure byin situx-ray diffraction. Physical Review B, 79(2). doi:10.1103/physrevb.79.024103Gomis, O., Santamaría-Pérez, D., Vilaplana, R., Luna, R., Sans, J. A., Manjón, F. J., … Ursaki, V. V. (2014). Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure. Journal of Alloys and Compounds, 583, 70-78. doi:10.1016/j.jallcom.2013.08.123Gomis, O., Vilaplana, R., Manjón, F. J., Pérez-González, E., López-Solano, J., Rodríguez-Hernández, P., … Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121Toby, B. H. (2006). R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21(1), 67-70. doi:10.1154/1.2179804Vilaplana, R., Gomis, O., Manjón, F. J., Ortiz, H. M., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2013). Lattice Dynamics Study of HgGa2Se4at High Pressures. The Journal of Physical Chemistry C, 117(30), 15773-15781. doi:10.1021/jp402493rDowns, R. T., & Singh, A. K. (2006). Analysis of deviatoric stress from nonhydrostatic pressure on a single crystal in a diamond anvil cell: The case of monoclinic aegirine, NaFeSi2O6. Journal of Physics and Chemistry of Solids, 67(9-10), 1995-2000. doi:10.1016/j.jpcs.2006.05.035Ruiz-Fuertes, J., Friedrich, A., Pellicer-Porres, J., Errandonea, D., Segura, A., Morgenroth, W., … Polian, A. (2011). Structure Solution of the High-Pressure Phase of CuWO4and Evolution of the Jahn–Teller Distortion. Chemistry of Materials, 23(18), 4220-4226. doi:10.1021/cm201592hFrogley, M. D., Sly, J. L., & Dunstan, D. J. (1998). Pressure dependence of the direct band gap in tetrahedral semiconductors. Physical Review B, 58(19), 12579-12582. doi:10.1103/physrevb.58.12579Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257Angel, R. J. (2000). Equations of State. Reviews in Mineralogy and Geochemistry, 41(1), 35-59. doi:10.2138/rmg.2000.41.
Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach
"This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://dx.doi.org/10.1021/jp5037926.”The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transition above 15 GPa to a disordered-rocksalt structure, whose equation of state was also obtained up to 25 GPa. In a downstroke from 25 GPa to 1 atm, our measurements indicate that CdAl2S4 does not return to the defect chalcopyrite phase; it partially retains the disordered-rocksalt phase and partially transforms into the spinel structure. The nature of the spinel structure was confirmed by the good agreement of our experimental results with our theoretical calculations. All in all, our experimental and theoretical results provide evidence that the spinel and defect chalcopyrite phases of CdAl2S4 are competitive at 1 atm. This result opens the way to the synthesis of spinel-type CdAl2S4 at near-ambient conditions.Financial support from the Spanish Consolider Ingenio 2010 Program (Project CSD2007-00045) is acknowledged. This work was also supported by Spanish MICCIN under Project MAT2010-21270-C04-03/04 and by Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Supercomputer time was provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges the Juan de la Cierva fellowship program for financial support. AM. and P.R.-H. acknowledge S. Munoz Rodriguez for providing a data-parsing application.Sans Tresserras, JÁ.; Santamaría Pérez, D.; Popescu, C.; Gomis, O.; Manjón Herrera, FJ.; Vilaplana Cerda, RI.; Muñoz, A.... (2014). Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach. Journal of Physical Chemistry C. 118(28):15363-15374. https://doi.org/10.1021/jp5037926S15363153741182
Structural and vibrational study of pseudocubic CdIn2Se4 under compression
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://dx.doi.org/10.1021/jp5077565We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.This study was supported by the Spanish government MEC under Grant Nos: MAT2013-46649-C4-3-P, MAT2013-46649-C4-2-P, MAT2010-21270-C04-03/04, and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-1012). A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and also to S. Munoz-Rodriguez for providing a data-parsing application. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Santamaría Pérez, D.; Gomis, O.; Pereira, ALJ.; Vilaplana Cerda, RI.; Popescu, C.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.... (2014). Structural and vibrational study of pseudocubic CdIn2Se4 under compression. Journal of Physical Chemistry C. 118(46):26987-26999. https://doi.org/10.1021/jp5077565S26987269991184
High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds
High-pressure optical absorption and Raman scattering measurements have been performed in defect chalcopyrite (DC) CdGa2Se4 up to 22 GPa during two pressure cycles to investigate the pressure-induced order-disorder phase transitions taking place in this ordered-vacancy compound. Our measurements reveal that on decreasing pressure from 22 GPa, the sample does not revert to the initial phase but likely to a disordered zinc blende (DZ) structure the direct bandgap and Raman-active modes of which have been measured during a second upstroke. Our measurements have been complemented with electronic structure and lattice dynamical ab initio calculations. Lattice dynamical calculations have helped us to discuss and assign the symmetries of the Raman modes of the DC phase. Additionally, our electronic band structure calculations have helped us in discussing the order-disorder effects taking place above 6¿8 GPa during the first upstroke. © 2012 American Institute of PhysicsThis study was supported by the Spanish government MICINN under Grant No. MAT2010-21270-C04-01/03/04; by the Generalitat Valenciana (Project No. GV06/151), by MALTA Consolider Ingenio 2010 project (CSD2007-00045), by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2012-1469), and by the Spanish MICINN under Project No. CTQ2009-14596-C02-01 and Comunidad de Madrid and the European Social Fund Grant No. S2009/PPQ-1551 4161893 (QUI-MAPRES). E.P-G., J.L-S., A. M., and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster.Gomis Hilario, O.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.; Pérez-González, E.; López-Solano, J.; Rodríguez-Hernández, P.; Muñoz, A.... (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics. 111(1):135181-1351815. https://doi.org/10.1063/1.3675162S13518113518151111A. MacKinnon, in Tables of Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, M. Schulz, and H. Weiss (Springer-Verlag, Berlin, 1985), Vol. 17, p. 124.Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201Zunger, A., Wagner, S., & Petroff, P. M. (1993). New materials and structures for photovoltaics. Journal of Electronic Materials, 22(1), 3-16. doi:10.1007/bf02665719Morón, M. C., & Hull, S. (2003). Order-disorder phase transition inZn1−xMnxGa2Se4: Long-range order parameter versusx. Physical Review B, 67(12). doi:10.1103/physrevb.67.125208Joshi, N. V., Luengo, J., & Vera, F. (2007). Optical activity in []ZnGa2S4. Materials Letters, 61(8-9), 1926-1928. doi:10.1016/j.matlet.2006.07.177Krämer, V., Siebert, D., & Febbraro, S. (1984). Structure refinement of cadmium gallium selenide CdGa2Se4. Zeitschrift für Kristallographie, 169(1-4), 283-287. doi:10.1524/zkri.1984.169.1-4.283Gastaldi, L., Simeone, M. G., & Viticoli, S. (1985). Cation ordering and crystal structures in AGa2X4 compounds (CoGa2S4, CdGa2S4, CdGa2Se4, HgGa2Se4, HgGa2Te4). Solid State Communications, 55(7), 605-607. doi:10.1016/0038-1098(85)90821-xUrsaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Mitani, T., Naitou, T., Matsuishi, K., Onari, S., Allakhverdiev, K., Gashimzade, F., & Kerimova, T. (2003). Raman scattering in CdGa2Se4 under pressure. physica status solidi (b), 235(2), 321-325. doi:10.1002/pssb.200301579Fuentes-Cabrera, M. (2001). Ab initiostudy of the vibrational and electronic properties of CdGa2S4and CdGa2Se4under pressure. Journal of Physics: Condensed Matter, 13(45), 10117-10124. doi:10.1088/0953-8984/13/45/301Fuentes-Cabrera, M., & Sankey, O. F. (2001). Theoretical study of the ordered-vacancy semiconducting compound CdAl2Se4. Journal of Physics: Condensed Matter, 13(8), 1669-1684. doi:10.1088/0953-8984/13/8/305Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Manjón, F. J., Gomis, O., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., Errandonea, D., … Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201Eifler, A., Hecht, J.-D., Lippold, G., Riede, V., Grill, W., Krauß, G., & Krämer, V. (1999). Combined infrared and Raman study of the optical phonons of defect chalcopyrite single crystals. Physica B: Condensed Matter, 263-264, 806-808. doi:10.1016/s0921-4526(98)01292-7Eifler, A., Krauss, G., Riede, V., Krämer, V., & Grill, W. (2005). Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4. Journal of Physics and Chemistry of Solids, 66(11), 2052-2057. doi:10.1016/j.jpcs.2005.09.049Burlakov, I. I., Raptis, Y., Ursaki, V. V., Anastassakis, E., & Tiginyanu, I. M. (1997). Order-disorder phase transition in CdAl2S4 under hydrostatic pressure. Solid State Communications, 101(5), 377-381. doi:10.1016/s0038-1098(96)00602-3Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Letoullec, R., Pinceaux, J. P., & Loubeyre, P. (1988). The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Research, 1(1), 77-90. doi:10.1080/08957958808202482Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Tiginyanu, I. M., Lottici, P. P., Razzetti, C., & Gennari, S. (1993). Effects of the Cations on the Raman Spectra of Sulphur Defect Chalcopyrites. Japanese Journal of Applied Physics, 32(S3), 561. doi:10.7567/jjaps.32s3.561Razzetti, C., & Lottici, P. P. (1993). Raman Scattering in Defective AIIB2IIIX4VICompounds and Alloys. Japanese Journal of Applied Physics, 32(S3), 431. doi:10.7567/jjaps.32s3.431Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9Wei, S.-H., Zhang, S. B., & Zunger, A. (1999). Band structure and stability of zinc-blende-based semiconductor polytypes. Physical Review B, 59(4), R2478-R2481. doi:10.1103/physrevb.59.r2478Garbato, L., Ledda, F., & Rucci, A. (1987). Structural distortions and polymorphic behaviour in ABC2 and AB2C4 tetrahedral compounds. Progress in Crystal Growth and Characterization, 15(1), 1-41. doi:10.1016/0146-3535(87)90008-6Besson, J. M., Itié, J. P., Polian, A., Weill, G., Mansot, J. L., & Gonzalez, J. (1991). High-pressure phase transition and phase diagram of gallium arsenide. Physical Review B, 44(9), 4214-4234. doi:10.1103/physrevb.44.4214Nakajima, A., Yoshihara, A., & Ishigame, M. (1994). Defect-induced Raman spectra in dopedCeO2. Physical Review B, 50(18), 13297-13307. doi:10.1103/physrevb.50.13297Li, H. D., Zhang, S. L., Yang, H. B., Zou, G. T., Yang, Y. Y., Yue, K. T., … Yan, Y. (2002). Raman spectroscopy of nanocrystalline GaN synthesized by arc plasma. Journal of Applied Physics, 91(7), 4562-4567. doi:10.1063/1.1452762Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222Manjón, F. J., Errandonea, D., Segura, A., Chervin, J. C., & Muñoz, V. (2002). Precursor effects of the Rhombohedral-to-Cubic Phase Transition in Indium Selenide. High Pressure Research, 22(2), 261-266. doi:10.1080/08957950212819Bilz, H., & Kress, W. (1979). Phonon Dispersion Relations in Insulators. Springer Series in Solid-State Sciences. doi:10.1007/978-3-642-81347-4Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007Talwar, D. N., Vandevyver, M., Kunc, K., & Zigone, M. (1981). Lattice dynamics of zinc chalcogenides under compression: Phonon dispersion, mode Grüneisen, and thermal expansion. Physical Review B, 24(2), 741-753. doi:10.1103/physrevb.24.741Koval, L. S., Markus, M. M., Radautsan, S. I., Sobolev, V. V., & Stanchu, A. V. (1972). Optical properties of the two modifications of CdIn2Se4. Physica Status Solidi (a), 9(1), K69-K72. doi:10.1002/pssa.2210090164(1996). physica status solidi (b), 198(1). doi:10.1002/pssb.v198:1Edwards, A. L., & Drickamer, H. G. (1961). Effect of Pressure on the Absorption Edges of Some III-V, II-VI, and I-VII Compounds. Physical Review, 122(4), 1149-1157. doi:10.1103/physrev.122.1149Wei, S.-H., & Zunger, A. (1999). Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Physical Review B, 60(8), 5404-5411. doi:10.1103/physrevb.60.5404GonzáLez, J., Power, C., Chervin, J. C., Hamel, G., & Snoeck, E. (2002). Nanocrystals of CdSe Formed by the Pressure Cycle Method. High Pressure Research, 22(2), 271-275. doi:10.1080/0895795021281
Vibrational study of HgGa2S4 under high pressure
In this work, we report on high-pressure Raman scattering measurements in mercury digallium sulfide (HgGa2S4) with defect chalcopyrite structure that have been complemented with lattice dynamics ab initio calculations. Our measurements evidence that this semiconductor exhibits a pressure-induced phase transition from the completely ordered defect chalcopyrite structure to a partially disordered defect stannite structure above 18 GPa which is prior to the transition to the completely disordered rocksalt phase above 23 GPa. Furthermore, a completely disordered zincblende phase is observed below 5 GPa after decreasing pressure from 25 GPa. The disordered zincblende phase undergoes a reversible pressure-induced phase transition to the disordered rocksalt phase above 18 GPa. The sequence of phase transitions here reported for HgGa2S4 evidence the existence of an intermediate phase with partial cation-vacancy disorder between the ordered defect chalcopyrite and the disordered rocksalt phases and the irreversibility of the pressure-induced order-disorder processes occurring in ordered-vacancy compounds. The pressure dependence of the Raman modes of all phases, except the Raman-inactive disordered rocksalt phase, have been measured and discussed.This study was supported by the Spanish government MEC under Grant No: MAT2010-21270-C04-01/03/04, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). E. P.-G., P. R.-H., and A. M. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. acknowledges Juan de la Cierva fellowship program for his financial support.Vilaplana Cerda, RI.; Robledillo, M.; Gomis Hilario, O.; Sans, J.; Manjón Herrera, FJ.; Pérez-González, E.; Rodríguez-Hernández, P.... (2013). Vibrational study of HgGa2S4 under high pressure. Journal of Applied Physics. 113(9):935121-9351210. https://doi.org/10.1063/1.4794096S93512193512101139A. MacKinnon, inTables of Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, M. Schulz, and H. Weiss (Springer-Verlag, Berlin, 1985), Vol. 17, p. 124.Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201Hahn, H., Frank, G., Klingler, W., St�rger, A. D., & St�rger, G. (1955). Untersuchungen �ber tern�re Chalkogenide. VI. �ber Tern�re Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Zeitschrift f�r anorganische und allgemeine Chemie, 279(5-6), 241-270. doi:10.1002/zaac.19552790502Schwer, H., & Krämer, V. (1990). The crystal structures of CdAl2S4, HgAl2S4, and HgGa2S4. Zeitschrift für Kristallographie, 190(1-2), 103-110. doi:10.1524/zkri.1990.190.1-2.103Levine, B., Bethea, C., Kasper, H., & Thiel, F. (1976). Nonlinear optical susceptibility of HgGa<inf>2</inf>S<inf>4</inf> IEEE Journal of Quantum Electronics, 12(6), 367-368. doi:10.1109/jqe.1976.1069169Ursaki, V. ., Ricci, P. ., Tiginyanu, I. ., Anedda, A., Syrbu, N. ., & Tezlevan, V. . (2002). Excitation and temperature tuned photoluminescence in HgGa 2 S 4 single crystals. Journal of Physics and Chemistry of Solids, 63(10), 1823-1828. doi:10.1016/s0022-3697(02)00002-1Rotermund, F., Petrov, V., & Noack, F. (2000). Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2. Optics Communications, 185(1-3), 177-183. doi:10.1016/s0030-4018(00)00987-1Badikov, V. V., Kuzmin, N. V., Laptev, V. B., Malinovsky, A. L., Mitin, K. V., Nazarov, G. S., … Schebetova, N. I. (2004). A study of the optical and thermal properties of nonlinear mercury thiogallate crystals. Quantum Electronics, 34(5), 451-456. doi:10.1070/qe2004v034n05abeh002702Schunemann, P. G., & Pollak, T. M. (1997). Synthesis and growth of HgGa2S4 crystals. Journal of Crystal Growth, 174(1-4), 278-282. doi:10.1016/s0022-0248(96)01158-xRange, K.-J., Becker, W., & Weiss, A. (1968). Notizen: Über Hochdruckphasen des CdAl2S4, HgAl2S4, ZnAl2Se2, CdAl2Se4 und HgAl2Se4 mit Spinellstruktur. Zeitschrift für Naturforschung B, 23(7), 1009-1009. doi:10.1515/znb-1968-0726Burlakov, I. I., Raptis, Y., Ursaki, V. V., Anastassakis, E., & Tiginyanu, I. M. (1997). Order-disorder phase transition in CdAl2S4 under hydrostatic pressure. Solid State Communications, 101(5), 377-381. doi:10.1016/s0038-1098(96)00602-3Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007Garbato, L., Ledda, F., & Rucci, A. (1987). Structural distortions and polymorphic behaviour in ABC2 and AB2C4 tetrahedral compounds. Progress in Crystal Growth and Characterization, 15(1), 1-41. doi:10.1016/0146-3535(87)90008-6Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396Manjón, F. J., Gomis, O., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., Errandonea, D., … Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201Gomis, O., Vilaplana, R., Manjón, F. J., Pérez-González, E., López-Solano, J., Rodríguez-Hernández, P., … Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162Eifler, A., Hecht, J.-D., Lippold, G., Riede, V., Grill, W., Krauß, G., & Krämer, V. (1999). Combined infrared and Raman study of the optical phonons of defect chalcopyrite single crystals. Physica B: Condensed Matter, 263-264, 806-808. doi:10.1016/s0921-4526(98)01292-7Eifler, A., Krauss, G., Riede, V., Krämer, V., & Grill, W. (2005). Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4. Journal of Physics and Chemistry of Solids, 66(11), 2052-2057. doi:10.1016/j.jpcs.2005.09.049Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. doi:10.1088/0953-8984/21/39/395502Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Haeuseler, H. (1978). FIR- und Ramanspektren von ternären Chalkogeniden des Galliums und Indiums mit Zink, Cadmium und Quecksilber. Journal of Solid State Chemistry, 26(4), 367-376. doi:10.1016/0022-4596(78)90171-8Haeuseler, H., Wäschenbach, G., & Lutz, H. D. (1985). Directional Dispersion of the Phonon Modes in Optically Uniaxial Solids, Far-Infrared Reflection Spectra, Dielectric and Optic Constants, Dynamic Effective Ionic Charges of the Defect Chalcopyrites CdGa2S4, CdGa2Se4, HgGa2S4, and HgGa2Se4. physica status solidi (b), 129(2), 549-558. doi:10.1002/pssb.2221290212Takahashi, Y., Namatsu, H., Machida, K., & Minegishi, K. (1993). Measurements of Diffusion Coefficiens of Water in Electron Cryclotron Resonance Plasma SiO2. Japanese Journal of Applied Physics, 32(Part 2, No. 3B), L431-L433. doi:10.1143/jjap.32.l431Loudon, R. (1964). The Raman effect in crystals. Advances in Physics, 13(52), 423-482. doi:10.1080/00018736400101051Alonso-Gutiérrez, P., & Sanjuán, M. L. (2008). Ordinary and extraordinary phonons and photons: Raman study of anisotropy effects in the polar modes ofMnGa2Se4. Physical Review B, 78(4). doi:10.1103/physrevb.78.045212Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089Lowe-Ma, C. K., & Vanderah, T. A. (1991). Structure of ZnGa2S4, a defect sphalerite derivative. Acta Crystallographica Section C Crystal Structure Communications, 47(5), 919-924. doi:10.1107/s0108270190011192Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Cardona, M., Kremer, R. K., Lauck, R., Siegle, G., Muñoz, A., & Romero, A. H. (2009). Electronic, vibrational, and thermodynamic properties of metacinnabarβ-HgS, HgSe, and HgTe. Physical Review B, 80(19). doi:10.1103/physrevb.80.195204Márquez, F., & Fornés, V. (1999). Synthesis and characterisation of Ga2S3 semiconductor included in zeolite Y. Solid State Communications, 112(1), 17-20. doi:10.1016/s0038-1098(99)00295-
Thermally-activated cation ordering in ZnGa2Se4 single crystals studied by Raman scattering, optical absorption, and ab initio calculations
Order-disorder phase transitions induced by thermal annealing have been studied in the ordered-vacancy compound ZnGa2Se4 by means of Raman scattering and optical absorption measurements. The partially disordered as-grown sample with tetragonal defect stannite (DS) structure and I (4) over bar 2m space group has been subjected to controlled heating and cooling cycles. In situ Raman scattering measurements carried out during the whole annealing cycle show that annealing the sample to 400 degrees C results in a cation ordering in the sample, leading to the crystallization of the ordered tetragonal defect chalcopyrite (DC) structure with I (4) over bar space group. On decreasing temperature the ordered cation scheme of the DC phase can be retained at ambient conditions. The symmetry of the Raman-active modes in both DS and DC phases is discussed and the similarities and differences between the Raman spectra of the two phases emphasized. The ordered structure of annealed samples is confirmed by optical absorption measurements and ab initio calculations, that show that the direct bandgap of DC-ZnGa2Se4 is larger than that of DS-ZnGa2Se4.This study was supported by the Spanish government MEC under grants MAT2010-21270-C04-01/03/04 and MAT2010-19837-C06-06, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). EP-G, AM, and PR-H acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. Finally, the authors would also like to acknowledge M C Moron for stimulating discussions and revision of the present manuscript.Vilaplana Cerda, RI.; Gomis Hilario, O.; Pérez-González, E.; Ortiz, HM.; Manjón Herrera, FJ.; Rodríguez-Hernández, P.; Muñoz, A.... (2013). Thermally-activated cation ordering in ZnGa2Se4 single crystals studied by Raman scattering, optical absorption, and ab initio calculations. Journal of Physics: Condensed Matter. 25(16):165802-1-165802-11. https://doi.org/10.1088/0953-8984/25/16/165802S165802-1165802-112516Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201Yahia, I. S., Fadel, M., Sakr, G. B., & Shenouda, S. S. (2010). Memory switching of ZnGa2Se4 thin films as a new material for phase change memories (PCMs). Journal of Alloys and Compounds, 507(2), 551-556. doi:10.1016/j.jallcom.2010.08.021Yahia, I. S., Fadel, M., Sakr, G. B., Yakuphanoglu, F., Shenouda, S. S., & Farooq, W. A. (2011). Analysis of current–voltage characteristics of Al/p-ZnGa2Se4/n-Si nanocrystalline heterojunction diode. Journal of Alloys and Compounds, 509(12), 4414-4419. doi:10.1016/j.jallcom.2011.01.068Hahn, H., Frank, G., Klingler, W., St�rger, A. D., & St�rger, G. (1955). Untersuchungen �ber tern�re Chalkogenide. VI. �ber Tern�re Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Zeitschrift f�r anorganische und allgemeine Chemie, 279(5-6), 241-270. doi:10.1002/zaac.19552790502Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089Morón, M. C., & Hull, S. (2003). Order-disorder phase transition inZn1−xMnxGa2Se4: Long-range order parameter versusx. Physical Review B, 67(12). doi:10.1103/physrevb.67.125208Morón, M. C., & Hull, S. (2005). Effect of magnetic dilution in Zn1−xMnxGa2Se4 (0<x<0.5). Journal of Applied Physics, 98(1), 013904. doi:10.1063/1.1944220Morón, M. C., & Hull, S. (2007). The influence of magnetic dilution in the Zn1−xMnxGa2Se4 series with 0.5<x⩽1. Journal of Applied Physics, 102(3), 033919. doi:10.1063/1.2767273Antonioli, G., Lottici, P. P., & Razzetti, C. (1989). The structure of the defect chalcopyrite ZnGa2Se4 studied by EXAFS. physica status solidi (b), 152(1), 39-49. doi:10.1002/pssb.2221520104Haeuseler, H. (1978). FIR- und Ramanspektren von ternären Chalkogeniden des Galliums und Indiums mit Zink, Cadmium und Quecksilber. Journal of Solid State Chemistry, 26(4), 367-376. doi:10.1016/0022-4596(78)90171-8Eifler, A., Krauss, G., Riede, V., Krämer, V., & Grill, W. (2005). Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4. Journal of Physics and Chemistry of Solids, 66(11), 2052-2057. doi:10.1016/j.jpcs.2005.09.049Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9Razzetti, C., Lottici, P. P., & Antonioli, G. (1987). Structure and lattice dynamics of nonmagnetic defective AIIBIII2XIV4 compounds and alloys. Progress in Crystal Growth and Characterization, 15(1), 43-73. doi:10.1016/0146-3535(87)90009-8Attolini, G., Bini, S., Lottici, P. P., & Razzetti, C. (1992). Effects of Group III Cation Substitution in the Raman Spectra of Some Defective Chalcopyrites. Crystal Research and Technology, 27(5), 685-690. doi:10.1002/crat.2170270519Takahashi, Y., Namatsu, H., Machida, K., & Minegishi, K. (1993). Measurements of Diffusion Coefficiens of Water in Electron Cryclotron Resonance Plasma SiO2. Japanese Journal of Applied Physics, 32(Part 2, No. 3B), L431-L433. doi:10.1143/jjap.32.l431Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5Alonso-Gutiérrez, P., Sanjuán, M. L., & Morón, M. C. (2009). Thermally activated cation ordering in Zn0.5Mn0.5Ga2Se4single crystals studied by Raman scattering. physica status solidi (c), 6(5), 1182-1186. doi:10.1002/pssc.200881218Caldera, D., Morocoima, M., Quintero, M., Rincon, C., Casanova, R., & Grima, P. (2011). On the crystal structure of the defective ternary compound. Solid State Communications, 151(3), 212-215. doi:10.1016/j.ssc.2010.11.031Gomis, O., Vilaplana, R., Manjón, F. J., Pérez-González, E., López-Solano, J., Rodríguez-Hernández, P., … Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162Eifler, A., Hecht, J.-D., Lippold, G., Riede, V., Grill, W., Krauß, G., & Krämer, V. (1999). Combined infrared and Raman study of the optical phonons of defect chalcopyrite single crystals. Physica B: Condensed Matter, 263-264, 806-808. doi:10.1016/s0921-4526(98)01292-7Sanjuán, M. L., & Morón, M. C. (2002). Raman study of Zn1−xMnxGa2Se4 diluted magnetic semiconductors: disorder and resonance effects. Physica B: Condensed Matter, 316-317, 565-567. doi:10.1016/s0921-4526(02)00574-4Letoullec, R., Pinceaux, J. P., & Loubeyre, P. (1988). The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Research, 1(1), 77-90. doi:10.1080/08957958808202482Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396Manjón, F. J., Gomis, O., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., Errandonea, D., … Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201Santamaría-Pérez, D., Amboage, M., Manjón, F. J., Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., … Tiginyanu, I. M. (2012). Crystal Chemistry of CdIn2S4, MgIn2S4, and MnIn2S4 Thiospinels under High Pressure. The Journal of Physical Chemistry C, 116(26), 14078-14087. doi:10.1021/jp303164kBaroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. doi:10.1088/0953-8984/21/39/395502Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110Loudon, R. (1964). The Raman effect in crystals. Advances in Physics, 13(52), 423-482. doi:10.1080/00018736400101051Alonso-Gutiérrez, P., & Sanjuán, M. L. (2008). Ordinary and extraordinary phonons and photons: Raman study of anisotropy effects in the polar modes ofMnGa2Se4. Physical Review B, 78(4). doi:10.1103/physrevb.78.045212Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222Garbato, L., Ledda, F., & Rucci, A. (1987). Structural distortions and polymorphic behaviour in ABC2 and AB2C4 tetrahedral compounds. Progress in Crystal Growth and Characterization, 15(1), 1-41. doi:10.1016/0146-3535(87)90008-6Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224Marquina, J., Power, C., Grima, P., Morocoima, M., Quintero, M., Couzinet, B., … González, J. (2006). Crystallographic properties of the MnGa2Se4 compound under high pressure. Journal of Applied Physics, 100(9), 093513. doi:10.1063/1.2358826Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4. Journal of Applied Physics, 113(7), 073510. doi:10.1063/1.4792495Lowe-Ma, C. K., & Vanderah, T. A. (1991). Structure of ZnGa2S4, a defect sphalerite derivative. Acta Crystallographica Section C Crystal Structure Communications, 47(5), 919-924. doi:10.1107/s0108270190011192Roa, L., Chervin, J. C., Chevy, A., Davila, M., Grima, P., & Gonzáez, J. (1996). Optical Absorption and Raman Scattering Measurements in CuAlSe2 at High Pressure. physica status solidi (b), 198(1), 99-104. doi:10.1002/pssb.222198011
Lattice dynamics study of HgGa2Se4 at high pressures
We report on Raman scattering measurements in mercury digallium selenide (HgGa2Se4) up to 25 GPa. We also performed, for the low-pressure defect-chalcopyrite structure, lattice-dynamics ab initio calculations at high pressures which agree with experiments. Measurements evidence that the semiconductor HgGa2Se4 exhibits a pressure-induced phase transition above 19 GPa to a previously undetected structure. This transition is followed by a transformation to a Raman-inactive phase above 23.4 GPa. On downstroke from 25 GPa until 2.5 GPa, a broad Raman spectrum was observed, which has been attributed to a fourth phase, and whose pressure dependence was followed during a second upstroke. Candidate structures for the three phases detected under compression are proposed. Finally, we also report and discuss the decomposition of the sample by laser heating at pressures close to 19 GPa. As possible products of decomposition, we have identified at least the formation of trigonal selenium nanoclusters and cinnabar-type HgSe.This study was supported by the Spanish government MEC under Grant No. MAT2010-21270-004-01/03/04, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), by Generalitat Valenciana through project GVA-ACOMP-2013-012, and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0966 and UPV2011-0914). E.P.-G., J.L.-S., A.M., and P.R.-H. acknowledge computing time provided by Red Espanola de Super-computacion (RES) and MALTA-Cluster.Vilaplana Cerda, RI.; Gomis Hilario, O.; Manjón Herrera, FJ.; Ortiz, HM.; Pérez González, E.; López Solano, J.; Rodríguez Hernández, P.... (2013). Lattice dynamics study of HgGa2Se4 at high pressures. Journal of Physical Chemistry C. 117(30):15773-15781. https://doi.org/10.1021/jp402493rS15773157811173
- …