40 research outputs found

    Inter- and intra-island speciation and their morphological and ecological correlates in Aeonium (Crassulaceae), a species-rich Macaronesian radiation

    Get PDF
    Background and Aims The most species-rich and ecologically diverse plant radiation on the Canary Islands is the Aeonium alliance (Crassulaceae). In island radiations like this, speciation can take place either within islands or following dispersal between islands. Aiming at quantifying intra- and inter-island speciation events in the evolution of Aeonium, and exploring their consequences, we hypothesized that (1) intra-island diversification resulted in stronger ecological divergence of sister lineages, and that (2) taxa on islands with a longer history of habitation by Aeonium show stronger ecological differentiation and produce fewer natural hybrids. Methods We studied the biogeographical and ecological setting of diversification processes in Aeonium with a fully sampled and dated phylogeny inferred using a ddRADseq approach. Ancestral areas and biogeographical events were reconstructed in BioGeoBEARS. Eleven morphological characters and three habitat characteristics were taken into account to quantify the morphological and ecological divergence between sister lineages. A co-occurrence matrix of all Aeonium taxa is presented to assess the spatial separation of taxa on each island. Key Results We found intra- and inter-island diversification events in almost equal numbers. In lineages that diversified within single islands, morphological and ecological divergence was more pronounced than in lineages derived from inter-island diversification, but only the difference in morphological divergence was significant. Those islands with the longest history of habitation by Aeonium had the lowest percentages of co-occurring and hybridizing taxon pairs compared with islands where Aeonium arrived later. Conclusions Our findings illustrate the importance of both inter- and intra-island speciation, the latter of which is potentially sympatric speciation. Speciation on the same island entailed significantly higher levels of morphological divergence compared with inter-island speciation, but ecological divergence was not significantly different. Longer periods of shared island habitation resulted in the evolution of a higher degree of spatial separation and stronger reproductive barriers.info:eu-repo/semantics/publishedVersio

    Cactaceae at Caryophyllales.org- A dynamic online species-level taxonomic backbone for the family

    Get PDF
    This data paper presents a largely phylogeny-based online taxonomic backbone for the Cactaceae compiled from literature and online sources using the tools of the EDIT Platform for Cybertaxonomy. The data will form a contribution of the Caryophyllales Network for the World Flora Online and serve as the base for further integration of research results from the systematic research community. The final aim is to treat all effectively published scientific names in the family. The checklist includes 150 accepted genera, 1851 accepted species, 91 hybrids, 746 infraspecific taxa (458 heterotypic, 288 with autonyms), 17,932 synonyms of accepted taxa, 16 definitely excluded names, 389 names of uncertain application, 672 unresolved names and 454 names belonging to (probably artificial) named hybrids, totalling 22,275 names. The process of compiling this database is described and further editorial rules for the compilation of the taxonomic backbone for the Caryophyllales Network are proposed. A checklist depicting the current state of the taxonomic backbone is provided as supplemental material. All results are also available online on the website of the Caryophyllales Network and will be constantly updated and expanded in the future. Citation: Korotkova N., Aquino D., Arias S., Eggli U., Franck A., Gómez-Hinostrosa C., Guerrero P. C., Hernández H. M., Kohlbecker A., Köhler M., Luther K., Majure L. C., Müller A., Metzing D., Nyffeler R., Sánchez D., Schlumpberger B. & Berendsohn W. G. 2021: Cactaceae at Caryophyllales.org- A dynamic online species-level taxonomic backbone for the family.-Willdenowia 51: 251-270. Version of record first published online on 31 August 2021 ahead of inclusion in August 2021 issue. Data published through: Http://caryophyllales.org/cactaceae/Checklis

    From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/1/ajb21069.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/2/ajb21069_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/3/ajb21069-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/4/ajb21069-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/5/ajb21069-sup-0001-AppendixS1.pd

    A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales

    Full text link
    The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plants” series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world

    A synopsis of woody Portulacaceae in Madagascar

    No full text
    Volume: 19Start Page: 45End Page: 5

    Why we don't need registration

    No full text

    Validation of the Name Parodia lenninghausii (Cactaceae), with a Note on the Lectotypification and Orthography of the Name

    No full text
    Volume: 20Start Page: 30End Page: 3

    Comparative Stem Anatomy and Systematics ofEriosyce sensu lato(Cactaceae)

    Get PDF
    The genusEriosyceas circumscribed by Kattermann (Succulent Plant Research1: 1-176, 1994) comprises six subsections with 33 species and 38 heterotypic infraspecific taxa and is restricted in distribution to Chile and NW Argentina. A total of 19 anatomical and gross morphological characters were studied from stem material of 27 taxa ofEriosyceand six outgroup taxa from the generaAustrocactus,Copiapoa,Corryocactus,EulychniaandNeowerdermannia(all from the tribe Notocacteae of subfamily Cactoideae). Comparisons between field-collected and glasshouse-cultivated plant material, as well as comparisons between samples from different positions on the stem, allowed an assessment of the variability of various characters. A detailed cladistic investigation with different character composition and character coding was conducted to check for combinations of characters that support a number of different clades.Eriosycesubsect.Chileosyce(includingE. napinaandE. odieri, but excludingE. laui) andE.subsect.Neoporteriaare very well characterized by a number of the attributes investigated, such as a papillate or completely flat epidermal relief, a very soft and strongly mucilaginous cortex, or a tuberculate stem with the podaria arranged in helical lines. The usefulness of the anatomical and morphological data was examined further by a cladistic analysis of a subgroup of 21 taxa supplemented with data on flowers, fruits and seeds (data from published sources). The present circumscription ofEriosyce(includingHorridocactus,Neoporteria, andThelocephala) is not seriously questioned by these cladistic analyses, with the possible exception ofIslaya. The position ofE. lauiremains unresolved.Copyright 1997 Annals of Botany Compan

    Introduction to the Diversity of Succulent Rosids

    Full text link
    corecore