67 research outputs found

    Dissection of Splicing Regulation at an Endogenous Locus by Zinc-Finger Nuclease-Mediated Gene Editing

    Get PDF
    Sequences governing RNA splicing are difficult to study in situ due to the great difficulty of traditional targeted mutagenesis. Zinc-finger nuclease (ZFN) technology allows for the rapid and efficient introduction of site-specific mutations into mammalian chromosomes. Using a ZFN pair along with a donor plasmid to manipulate the outcomes of DNA repair, we introduced several discrete, targeted mutations into the fourth intron of the endogenous BAX gene in Chinese hamster ovary cells. Putative lariat branch points, the polypyrimidine tract, and the splice acceptor site were targeted. We recovered numerous otherwise isogenic clones carrying the intended mutations and analyzed the effect of each on BAX pre-mRNA splicing. Mutation of one of three possible branch points, the polypyrimidine tract, and the splice acceptor site all caused exclusion of exon five from BAX mRNA. Interestingly, these exon-skipping mutations allowed usage of cryptic splice acceptor sites within intron four. These data demonstrate that ZFN-mediated gene editing is a highly effective tool for dissection of pre-mRNA splicing regulatory sequences in their endogenous context

    1003. Targeted Site-Specific Integration in Human Cells Using Designed Zinc Finger Nucleases

    Get PDF
    We have shown previously that human genome editing can be performed at high efficiency using designed zinc finger nucleases (ZFNs). ZFNs can be engineered to generate a double-strand break at a specific chromosomal location both in transformed and primary human cells. These breaks are repaired by the cell's own DNA repair machinery, and when a homologous extrachromosomal donor molecule is provided, a homology-directed repair process leads to highly efficient transfer of single-base-pair changes into the chromosome (Urnov et al. Nature 435: 646). ZFNs can be engineered to target virtually any chromosomal location (Pabo et al., Ann. Rev. Biochem. 70: 313), and function robustly in human hematopoietic stem cells, hence such localized gene modification may potentially be useful in the correction and treatment of certain monogenic diseases. Here we show that ZFNs can also be used for the preciseinsertion of a novel sequence into a pre-determined location in the human genome. Remarkably, this novel sequence can constitute a short patch sequence or several kilobases of one or more transgenes. We have observed ZFN-driven targeted integration into endogenous chromosomal loci in human cells of entire open reading frames and promoter-transcription units at a frequency of 5% in the absence of any selection. We also show the use of this process to disrupt with high efficiency an endogenous chromosomal locus with a selectable marker ORF. Finally, we describe our work on using ZFN-driven integration to insert a therapeutically-relevant transgene into a |[ldquo]|safe-harbor|[rdquo]| locus in the human genome, potentially avoiding the problem of insertional mutagenesis. Hence, the homology-directed repair process invoked by the ZFNs can be used to carry out high-efficiency targeted integration to potentially improve the safety and efficacy of gene therapy

    Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation

    Get PDF
    Telomere length homeostasis is essential for the long-term survival of stem cells, and its set point determines the proliferative capacity of differentiated cell lineages by restricting the reservoir of telomeric repeats. Knockdown and overexpression studies in human tumor cells showed that the shelterin subunit TPP1 recruits telomerase to telomeres through a region termed the TEL patch. However, these studies do not resolve whether the TPP1 TEL patch is the only mechanism for telomerase recruitment and whether telomerase regulation studied in tumor cells is representative of nontransformed cells such as stem cells. Using genome engineering of human embryonic stem cells, which have physiological telomere length homeostasis, we establish that the TPP1 TEL patch is genetically essential for telomere elongation and thus long-term cell viability. Furthermore, genetic bypass, protein fusion, and intragenic complementation assays define two distinct additional mechanisms of TPP1 involvement in telomerase action at telomeres. We demonstrate that TPP1 provides an essential step of telomerase activation as well as feedback regulation of telomerase by telomere length, which is necessary to determine the appropriate telomere length set point in human embryonic stem cells. These studies reveal and resolve multiple TPP1 roles in telomere elongation and stem cell telomere length homeostasis. Keywords: embryonic stem cells; human genome engineering; shelterin; telomerase telomere maintenanceNational Institutes of Health (U.S.) (Grant R37-CA084198)National Institutes of Health (U.S.) (Grant RO1-CA087869)National Institutes of Health (U.S.) (Grant RO1-HD045022

    Promoter keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification

    Get PDF
    Non-invasive epigenome editing is a promising strategy for engineering gene expression programs, yet potency, specificity, and persistence remain challenging. Here we show that effective epigenome editing is gated at single-base precision via 'keyhole' sites in endogenous regulatory DNA. Synthetic repressors targeting promoter keyholes can ablate gene expression in up to 99% of primary cells with single-gene specificity and can seamlessly repress multiple genes in combination. Transient exposure of primary T cells to keyhole repressors confers mitotically heritable silencing that persists to the limit of primary cultures in vitro and for at least 4 weeks in vivo, enabling manufacturing of cell products with enhanced therapeutic efficacy. DNA recognition and effector domains can be encoded as separate proteins that reassemble at keyhole sites and function with the same efficiency as single chain effectors, enabling gated control and rapid screening for novel functional domains that modulate endogenous gene expression patterns. Our results provide a powerful and exponentially flexible system for programming gene expression and therapeutic cell products

    Translating dosage compensation to trisomy 21

    Get PDF
    Down syndrome is the leading genetic cause of intellectual disabilities, occurring in 1 out of 700 live births. Given that Down syndrome is caused by an extra copy of chromosome 21 that involves over-expression of 400 genes across a whole chromosome, it precludes any possibility of a genetic therapy. Our lab has long studied the natural dosage compensation mechanism for X chromosome inactivation. To “dosage compensate” X-linked genes between females and males, the X-linked XIST gene produces a large non-coding RNA that silences one of the two X chromosomes in female cells. The initial motivation of this study was to translate the natural mechanisms of X chromosome inactivation into chromosome therapy for Down syndrome. Using genome editing with zinc finger nucleases, we have successfully inserted a large XIST transgene into Chromosome 21 in Down syndrome iPS cells, which results in chromosome-wide transcriptional silencing of the extra Chromosome 21. Remarkably, deficits in proliferation and neural growth are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro surmounts the major first step towards potential development of “chromosome therapy” for Down syndrome. The human iPSC-based trisomy correction system we established opens a unique opportunity to identify therapeutic targets and study transplantation therapies for Down syndrome

    Targeted genome editing across species using ZFNs and TALENs

    Get PDF
    Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species

    Genetic engineering of human ES and iPS cells using TALE nucleases

    Get PDF
    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator–like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).National Institutes of Health (U.S.) (Grant R37-CA084198)National Institutes of Health (U.S.) (Grant RO1-CA087869)National Institutes of Health (U.S.) (Grant RO1-HD045022)Howard Hughes Medical Institut

    Promoter keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification

    Get PDF
    Non-invasive epigenome editing is a promising strategy for engineering gene expression programs, yet potency, specificity, and persistence remain challenging. Here we show that effective epigenome editing is gated at single-base precision via 'keyhole' sites in endogenous regulatory DNA. Synthetic repressors targeting promoter keyholes can ablate gene expression in up to 99% of primary cells with single-gene specificity and can seamlessly repress multiple genes in combination. Transient exposure of primary T cells to keyhole repressors confers mitotically heritable silencing that persists to the limit of primary cultures in vitro and for at least 4 weeks in vivo, enabling manufacturing of cell products with enhanced therapeutic efficacy. DNA recognition and effector domains can be encoded as separate proteins that reassemble at keyhole sites and function with the same efficiency as single chain effectors, enabling gated control and rapid screening for novel functional domains that modulate endogenous gene expression patterns. Our results provide a powerful and exponentially flexible system for programming gene expression and therapeutic cell products
    corecore