2 research outputs found

    Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications

    No full text
    Organic polymer thermoelectrics (TE) as well as transition metal (TM) silicides are two thermoelectric class of materials of interest because they are composed of atomic elements of high abundatice; which is a prerequisite for mass implementation of thermoelectric (TE) solutions for solar and waste heat recovery. But both materials have drawbacks when it comes to finding low-cost manufacturing. The metal silicide needs high temperature (amp;gt;1000 degrees C) for creating TE legs in a device from solid powder, but it is easy to achieve long TE legs in this case. On the contrary, organic TEs are synthesized at low temperature from solution. However, it is difficult to form long legs or thick films because of their low solubility. In this work, we propose a novel method for the room temperature synthesis of TE composite containing the microparticles of chromium disilicide; CrSi2 (inorganic filler) in an organic matrix of nanofibrillated cellulose-poly(3,4-ethyelenedioxythiophene)-polystyrene sulfonate (NFC-PEDOT:PSS). With this method, it is easy to create long TE legs in a room temperature process. The originality of the approach is the use of conducting polymer aerogel microparticles mixed with CrSi2 microparticles to obtain a composite solid at room temperature under pressure. We foresee that the method can be scaled up to fabricate and pattern TE modules. The composite has an electrical conductivity (sigma) of 5.4 +/- 0.5 S/cm and the Seebeck coefficient (a) of 88 +/- 9 mu V/K, power factor (alpha(2)sigma) of 4 +/- 1 mu Wm(-1) K-2 at room temperature. At a temperature difference of 32 degrees C, the output power/unit area drawn across the load, with the resistance same as the internal resistance of the device is 0.6 +/- 0.1 mu W/cm(2). (C) 2017 Elsevier B.V. All rights reserved.Funding Agencies|European Research Council [307596]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; "the Power Papers project" - Knut and Alice Wallenberg foundation; RISE - the Research Institutes of Sweden; University Grants Commission, India</p

    Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications

    No full text
    Organic polymer thermoelectrics (TE) as well as transition metal (TM) silicides are two thermoelectric class of materials of interest because they are composed of atomic elements of high abundatice; which is a prerequisite for mass implementation of thermoelectric (TE) solutions for solar and waste heat recovery. But both materials have drawbacks when it comes to finding low-cost manufacturing. The metal silicide needs high temperature (amp;gt;1000 degrees C) for creating TE legs in a device from solid powder, but it is easy to achieve long TE legs in this case. On the contrary, organic TEs are synthesized at low temperature from solution. However, it is difficult to form long legs or thick films because of their low solubility. In this work, we propose a novel method for the room temperature synthesis of TE composite containing the microparticles of chromium disilicide; CrSi2 (inorganic filler) in an organic matrix of nanofibrillated cellulose-poly(3,4-ethyelenedioxythiophene)-polystyrene sulfonate (NFC-PEDOT:PSS). With this method, it is easy to create long TE legs in a room temperature process. The originality of the approach is the use of conducting polymer aerogel microparticles mixed with CrSi2 microparticles to obtain a composite solid at room temperature under pressure. We foresee that the method can be scaled up to fabricate and pattern TE modules. The composite has an electrical conductivity (sigma) of 5.4 +/- 0.5 S/cm and the Seebeck coefficient (a) of 88 +/- 9 mu V/K, power factor (alpha(2)sigma) of 4 +/- 1 mu Wm(-1) K-2 at room temperature. At a temperature difference of 32 degrees C, the output power/unit area drawn across the load, with the resistance same as the internal resistance of the device is 0.6 +/- 0.1 mu W/cm(2). (C) 2017 Elsevier B.V. All rights reserved.Funding Agencies|European Research Council [307596]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; "the Power Papers project" - Knut and Alice Wallenberg foundation; RISE - the Research Institutes of Sweden; University Grants Commission, India</p
    corecore