4 research outputs found

    Fire-resistant bio-based polyurethane foams designed with two by-products derived from sugarcane fermentation process

    Get PDF
    There is a growing interest in replacing conventional fossil-based polymers and composites with waste-based materials and fillers for environmental sustainability. This study designed water-blown polyurethane rigid foams using two by-products from the Amyris fermentation process of producing β-farnesene. The distillation residue (FDR) served as the main polyol component in the foam’s formulation (PF), supplemented with 4.5% sugarcane bagasse ash (SCBA) as a fire-retardant filler (PFA). The study assessed the impact on foam properties. Based on the analysis of all compiled data (foam structure, mechanical, and thermal properties), it can be inferred that ash particles acted as nucleating points in the reaction media, leading to a reduction in foam density (from 134 to 105 kg/m3), cell size (from 496 to 480 nm), and thermal conductivity. The absence of chemical interaction between the ash filler and the polyurethane matrix indicates that the ash acts as a filler with a plasticizing effect, enhancing the polymer chain mobility. As a result, the glass transition temperature of the foam decreases (from 74 to 71.8 ºC), and the decomposition onset temperature is delayed. Although, the incorporation of 4.5% SCBA (grain size below 250 μm) was ineffective in the increment of the compressive strength, that small amount was enough to increase the foam’s specific strength from 1009 to 1149 m2/s2 suggesting that other factors (e.g. polyol feedstock, grain size, ash packing, etc.) are yet to be accounted. The flammability test results indicate that sugarcane bagasse ash improved the foam performance, reducing burning time from 251 to 90 s, time of extinguishment from 255 to 116 s, and burning length from 132 to 56.7 mm, meeting the fire protection standard UL 94, class HB. Despite the need for further improvement and detailed flammability evaluation, the results support the notion that polyurethane foams from renewable waste by-products offer a sustainable alternative to both edible and fossil-based sources. Additionally, sugarcane bagasse ash can be a suitable silica source for reinforcing composites with reduced flammability, potentially replacing harmful halogenated chemicals used for the same purpose.Work funded by AICEP (Agência para o Investimento e Comércio Externo de Portugal, E. P. E) through Alchemy—Capturing High Value from Industrial Fermentation Bio Products. Granting agency: Portugal 2020, European Regional Development Fund (FEDER). UIDB/04708/2020 and Programmatic Funding—UIDP/04708/2020 of the CONSTRUCT—Instituto de I&D em Estruturas e Construções—funded by national funds through the FCT/MCTES (PIDDAC)

    Development and characterization of hierarchical carbon-epoxy and glass-epoxy composite laminates containing interfacial nanocellulose

    No full text
    O estudo e desenvolvimento de materiais compósitos poliméricos (PMCs) contendo estruturas hierárquicas de reforço constitui uma importante linha de pesquisa com grande aplicabilidade nas indústrias aeroespacial, eólica, automotiva, de construção, de energia, entre outras. Recentemente, o uso de nanofases incorporadas como subestruturas hierárquicas em PMCs tornou-se uma atividade importante no âmbito da ciência e engenharia de materiais, sendo os nanotubos de carbono, junto com o grafeno, os exponentes mais representativos desse campo. Além disso, a crescente procura por baixos consumos energéticos nos processos, assim como a utilização de materiais sustentáveis que mantenham as propriedades desejadas, é condição marcante dos projetos de pesquisa desta década e deve se manter nas próximas. Nesse sentido, este estudo baseia-se na utilização de nanocelulose (NFC) como subestrutura hierárquica de reforço, em razão de esse material ter alta disponibilidade no meio, fácil processamento, baixo custo e baixo consumo energético na sua síntese, enquanto oferece excelentes propriedades físico-mecânicas. Para incorporar a subestrutura de reforço nos PMCs, suspensões aquosas de 0,1%p/p para NFC na forma de celulose microfibrilada (MFC) e de nanocelulose oxidada (TOCNs) foram depositadas via imersão sobre os tecidos crus de reforço principal. Assim, conseguiu-se um arranjo tricomponente constituído por uma fibra principal contínua, uma estrutura secundária de reforço e a matriz termorrígida de epóxi, sendo esta última incorporada pelo método de infusão de resina (RIFT). Os laminados obtidos para cada condição, diferenciados pelo tipo de reforço principal (vidro ou carbono) e pelo tipo de reforço secundário (MFC ou TOCNs), foram comparados mecanicamente com as condições não tratadas com NFC, utilizando os ensaios de tração, flexão de três pontos e resistência interlaminar. A partir desses ensaios obtiveram-se incrementos notáveis de 77, 49 e 74% em resistência interlaminar, resistência à flexão e tenacidade à fratura em flexão, respectivamente, para o sistema compósito de fibras de carbono reforçado com MFC em relação à condição controle. O sistema reforçado com fibras de vidro também apresentou resultados importantes, com aumentos de 54, 42 e 98% nas propriedades mencionadas anteriormente após a incorporação da nanofase TOCNs. Os sistemas compósitos desta pesquisa foram avaliados via análise dinâmico-mecânica (DMA), técnica importante para determinar o incremento em adesão interfacial após o tratamento com NFC para todas as condições estudadas. A ação hierárquica da NFC, seu tamanho e sua disposição dentro de cada compósito foram evidenciados via diferentes técnicas de microscopia avançada, compreendendo a contribuição da nanofase nas propriedades das estruturas tricomponentes. Utilizando microtomografia computadorizada, foi analisado o teor de fases, assim como a forma dos defeitos no interior de cada sistema compósito. Via espectroscopia de infravermelho foram determinadas as possíveis interações químicas presentes nos sistemas fibra-nanofibra. Finalmente, pesquisas complementares foram acrescentadas para entender a fundo a contribuição da nanofase no desempenho mecânico dos PMCs laminados. Desta forma, este projeto de pesquisa apresenta-se como um aporte em um tema pouco explorado nacional e internacionalmente, trazendo informações úteis para o desenvolvimento da área de pesquisa, de interesse para o crescimento industrial e científico do país.The understanding and development of polymer matrix composites (PMCs) comprised by reinforcing hierarchical structures is an important research field with high impact on aerospace, wind power, automotive, construction, energy and other industries. The use of nanomaterials, incorporated as secondary reinforcing phases of PMCs, has been considered a relevant and active topic, and carbon nanotubes and graphene are benchmarks in this field. However, the search for low energy consumption processes, as well as the use of sustainable materials with high mechanical performance, is a key condition for current research policies. Thus, this work is based on the utilization of a reinforcing substructure, namely cellulose nanofibers (NFC), due to its high availability, easy processing, low cost and low energy consumption synthesis, offering excellent mechanical and physical properties. To incorporate the substructure into the composite, unsized (neat) fabric preforms were dipped in aqueous suspensions (0.1 wt%) of NFC as microfibrillated cellulose (MFC) and TEMPO-oxidized cellulose nanofibers (TOCNs). In this way, a composite laminate with tri-component arrangement was built between the main fiber reinforcement, the secondary nanostructured phase and the polymer resin, the latter introduced via resin infusion techniques (RIFT). Carbon and glass-based laminate composites, differentiated by the type of substructure (MFC or TOCNs), were compared by mechanical testing with their corresponding baseline conditions via tensile, three point flexural and short beam strength tests. From these experiments, improvements of 77, 49 e 74% respectively for shear stress, flexural stress and flexural toughness at ultimate load were achieved to the system CFRP with MFC substructure. On the other hand, GFRP system improved the same properties by 54, 42 e 98%, after the incorporation of the oxidized nanofibers TOCNs. The hierarchical composites in this research were also evaluated via dynamic-mechanical analysis, an important technique to determine the increase in interfacial adhesion after the nanocellulose treatment. The hierarchical contribution of NFC, its size and arrangement inside the composite were evidenced by different advanced microscopy techniques, to understand the role of the nanostructure in the ultimate behavior of the laminated structures. An interfacial measurement combining TEM and EDS techniques was applied to the hierarchical composites, introducing a novel route for characterization of this important region. Via X-ray computed microtomography, the volumetric phase percent was evaluated, denoting important factors such as the shape and size of the voids. By using infrared spectroscopy, the possible interactions of fiber-nanofiber arrangements were also elucidated. Finally, complementary experiments were added to the last part to understand completely the function of the nanofibers in the mechanical performance of PMC laminates. Therefore, this thesis is a contribution for a minimally explored topic in national and international contexts, offering useful information to the development of this research field, highly relevant to industrial and academic sectors

    Development and characterization of hierarchical carbon-epoxy and glass-epoxy composite laminates containing interfacial nanocellulose

    No full text
    O estudo e desenvolvimento de materiais compósitos poliméricos (PMCs) contendo estruturas hierárquicas de reforço constitui uma importante linha de pesquisa com grande aplicabilidade nas indústrias aeroespacial, eólica, automotiva, de construção, de energia, entre outras. Recentemente, o uso de nanofases incorporadas como subestruturas hierárquicas em PMCs tornou-se uma atividade importante no âmbito da ciência e engenharia de materiais, sendo os nanotubos de carbono, junto com o grafeno, os exponentes mais representativos desse campo. Além disso, a crescente procura por baixos consumos energéticos nos processos, assim como a utilização de materiais sustentáveis que mantenham as propriedades desejadas, é condição marcante dos projetos de pesquisa desta década e deve se manter nas próximas. Nesse sentido, este estudo baseia-se na utilização de nanocelulose (NFC) como subestrutura hierárquica de reforço, em razão de esse material ter alta disponibilidade no meio, fácil processamento, baixo custo e baixo consumo energético na sua síntese, enquanto oferece excelentes propriedades físico-mecânicas. Para incorporar a subestrutura de reforço nos PMCs, suspensões aquosas de 0,1%p/p para NFC na forma de celulose microfibrilada (MFC) e de nanocelulose oxidada (TOCNs) foram depositadas via imersão sobre os tecidos crus de reforço principal. Assim, conseguiu-se um arranjo tricomponente constituído por uma fibra principal contínua, uma estrutura secundária de reforço e a matriz termorrígida de epóxi, sendo esta última incorporada pelo método de infusão de resina (RIFT). Os laminados obtidos para cada condição, diferenciados pelo tipo de reforço principal (vidro ou carbono) e pelo tipo de reforço secundário (MFC ou TOCNs), foram comparados mecanicamente com as condições não tratadas com NFC, utilizando os ensaios de tração, flexão de três pontos e resistência interlaminar. A partir desses ensaios obtiveram-se incrementos notáveis de 77, 49 e 74% em resistência interlaminar, resistência à flexão e tenacidade à fratura em flexão, respectivamente, para o sistema compósito de fibras de carbono reforçado com MFC em relação à condição controle. O sistema reforçado com fibras de vidro também apresentou resultados importantes, com aumentos de 54, 42 e 98% nas propriedades mencionadas anteriormente após a incorporação da nanofase TOCNs. Os sistemas compósitos desta pesquisa foram avaliados via análise dinâmico-mecânica (DMA), técnica importante para determinar o incremento em adesão interfacial após o tratamento com NFC para todas as condições estudadas. A ação hierárquica da NFC, seu tamanho e sua disposição dentro de cada compósito foram evidenciados via diferentes técnicas de microscopia avançada, compreendendo a contribuição da nanofase nas propriedades das estruturas tricomponentes. Utilizando microtomografia computadorizada, foi analisado o teor de fases, assim como a forma dos defeitos no interior de cada sistema compósito. Via espectroscopia de infravermelho foram determinadas as possíveis interações químicas presentes nos sistemas fibra-nanofibra. Finalmente, pesquisas complementares foram acrescentadas para entender a fundo a contribuição da nanofase no desempenho mecânico dos PMCs laminados. Desta forma, este projeto de pesquisa apresenta-se como um aporte em um tema pouco explorado nacional e internacionalmente, trazendo informações úteis para o desenvolvimento da área de pesquisa, de interesse para o crescimento industrial e científico do país.The understanding and development of polymer matrix composites (PMCs) comprised by reinforcing hierarchical structures is an important research field with high impact on aerospace, wind power, automotive, construction, energy and other industries. The use of nanomaterials, incorporated as secondary reinforcing phases of PMCs, has been considered a relevant and active topic, and carbon nanotubes and graphene are benchmarks in this field. However, the search for low energy consumption processes, as well as the use of sustainable materials with high mechanical performance, is a key condition for current research policies. Thus, this work is based on the utilization of a reinforcing substructure, namely cellulose nanofibers (NFC), due to its high availability, easy processing, low cost and low energy consumption synthesis, offering excellent mechanical and physical properties. To incorporate the substructure into the composite, unsized (neat) fabric preforms were dipped in aqueous suspensions (0.1 wt%) of NFC as microfibrillated cellulose (MFC) and TEMPO-oxidized cellulose nanofibers (TOCNs). In this way, a composite laminate with tri-component arrangement was built between the main fiber reinforcement, the secondary nanostructured phase and the polymer resin, the latter introduced via resin infusion techniques (RIFT). Carbon and glass-based laminate composites, differentiated by the type of substructure (MFC or TOCNs), were compared by mechanical testing with their corresponding baseline conditions via tensile, three point flexural and short beam strength tests. From these experiments, improvements of 77, 49 e 74% respectively for shear stress, flexural stress and flexural toughness at ultimate load were achieved to the system CFRP with MFC substructure. On the other hand, GFRP system improved the same properties by 54, 42 e 98%, after the incorporation of the oxidized nanofibers TOCNs. The hierarchical composites in this research were also evaluated via dynamic-mechanical analysis, an important technique to determine the increase in interfacial adhesion after the nanocellulose treatment. The hierarchical contribution of NFC, its size and arrangement inside the composite were evidenced by different advanced microscopy techniques, to understand the role of the nanostructure in the ultimate behavior of the laminated structures. An interfacial measurement combining TEM and EDS techniques was applied to the hierarchical composites, introducing a novel route for characterization of this important region. Via X-ray computed microtomography, the volumetric phase percent was evaluated, denoting important factors such as the shape and size of the voids. By using infrared spectroscopy, the possible interactions of fiber-nanofiber arrangements were also elucidated. Finally, complementary experiments were added to the last part to understand completely the function of the nanofibers in the mechanical performance of PMC laminates. Therefore, this thesis is a contribution for a minimally explored topic in national and international contexts, offering useful information to the development of this research field, highly relevant to industrial and academic sectors

    Synthesis of thermoset elastomer from microbial oil derived from the fermentation of sugarcane

    No full text
    In the context of the 21st century, the integration of diverse perspectives within the circular economy framework, encompassing waste management, economic growth, and environmental sustainability, stands out as a paramount challenge. Addressing this challenge, an innovative avenue emerges through the application of microbial oil to replace traditional petroleum in the synthesis of essential commodity chemicals. This groundbreaking study takes a significant step toward this goal by introducing a pioneering polyester material boasting an exceptionally high renewable content. This material is synthesized through melt polycondensation, utilizing a novel primary feedstock derived from the oily residue extracted post-distillation of β-farnesene (FDR). The ingenious approach involves fermenting sugarcane syrup using a genetically engineered yeast strain of Saccharomyces cerevisiae. The outcome of this study reveals the creation of an amorphous polymer with rubber-like attributes. These attributes include a Young's modulus of 3.9 MPa, with a maximum elastic strain and tensile stress values of 185.4% and 510 KPa, respectively, along with distinctive strain-hardening characteristics. Remarkably, this material also exhibits indications of shape memory behavior in a temperature range spanning from 47 to 12C, as discerned from dynamic mechanical analysis. Evidently, this novel polymer demonstrates exceptional promise in the realm of low-temperature applications. Its intrinsic ability to uphold mechanical integrity, even when subjected to substantial deformations within its service conditions, positions it as an invaluable resource for various components requiring resilience in challenging environments.Work funded by AICEP (Agência para o Investimento e Comércio Externo de Portugal, E. P. E) through Alchemy – Capturing High Value from Industrial Fermentation Bio Products. Granting agency: Portugal 2020, European Regional Development Fund (FEDER). Additional financial support by the FCT under the framework of Strategic Funding grant: UID/CTM/50025/2020 and grant: CEECINST/00018/2021 is also acknowledged
    corecore