4 research outputs found

    Modeling iPSC-derived human neurofibroma-like tumors in mice uncovers the heterogeneity of Schwann cells within plexiform neurofibromas

    Get PDF
    Fibroblast; Neural crest; SpheroidsFibroblasto; Cresta neural; EsferoidesFibroblast; Cresta neural; EsferoidesPlexiform neurofibromas (pNFs) are developmental tumors that appear in neurofibromatosis type 1 individuals, constituting a major source of morbidity and potentially transforming into a highly metastatic sarcoma (MPNST). pNFs arise after NF1 inactivation in a cell of the neural crest (NC)-Schwann cell (SC) lineage. Here, we develop an iPSC-based NC-SC in vitro differentiation system and construct a lineage expression roadmap for the analysis of different 2D and 3D NF models. The best model consists of generating heterotypic spheroids (neurofibromaspheres) composed of iPSC-derived differentiating NF1(−/−) SCs and NF1(+/−) pNF-derived fibroblasts (Fbs). Neurofibromaspheres form by maintaining highly proliferative NF1(−/−) cells committed to the NC-SC axis due to SC-SC and SC-Fb interactions, resulting in SC linage cells at different maturation points. Upon engraftment on the mouse sciatic nerve, neurofibromaspheres consistently generate human NF-like tumors. Analysis of expression roadmap genes in human pNF single-cell RNA-seq data uncovers the presence of SC subpopulations at distinct differentiation states.This work has mainly been supported by an agreement from the Johns Hopkins University School of Medicine and the Neurofibromatosis Therapeutic Acceleration Program (NTAP). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Johns Hopkins University School of Medicine. The work has also been partially supported by the Spanish Ministry of Science and Innovation, Carlos III Health Institute (ISCIII) (PI17/00524; PI20/00228) Plan Estatal de I + D + I 2013–2016, co-financed by the FEDER program – a way to build Europe, the Fundación PROYECTO NEUROFIBROMATOSIS, and by the Government of Catalonia (2017-SGR-496) and CERCA Program/Generalitat de Catalunya. M.M.-L. is supported by Fundación PROYECTO NEUROFIBROMATOSIS

    Unbalancing cAMP and Ras/MAPK pathways as a therapeutic strategy for cutaneous neurofibromas

    Full text link
    Cutaneous neurofibromas (cNFs) are benign Schwann cell (SC) tumors arising from subepidermal glia. Individuals with neurofibromatosis type 1 (NF1) may develop thousands of cNFs, which greatly affect their quality of life. cNF growth is driven by the proliferation of NF1-/- SCs and their interaction with the NF1+/- microenvironment. We analyzed the crosstalk between human cNF-derived SCs and fibroblasts (FBs), identifying an expression signature specific to the SC-FB interaction. We validated the secretion of proteins involved in immune cell migration, suggesting a role of SC-FB crosstalk in immune cell recruitment. The signature also captured components of developmental signaling pathways, including the cAMP elevator G protein-coupled receptor 68 (GPR68). Activation of Gpr68 by ogerin in combination with the MEK inhibitor (MEKi) selumetinib reduced viability and induced differentiation and death of human cNF-derived primary SCs, a result corroborated using an induced pluripotent stem cell-derived 3D neurofibromasphere model. Similar results were obtained using other Gpr68 activators or cAMP analogs/adenylyl cyclase activators in combination with selumetinib. Interestingly, whereas primary SC cultures restarted their proliferation after treatment with selumetinib alone was stopped, the combination of ogerinselumetinib elicited a permanent halt on SC expansion that persisted after drug removal. These results indicate that unbalancing the Ras and cAMP pathways by combining MEKi and cAMP elevators could be used as a potential treatment for cNFs

    Deep genomic analysis of malignant peripheral nerve sheath tumor cell lines challenges current malignant peripheral nerve sheath tumor diagnosis

    Full text link
    Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas of the peripheral nervous system that develop either sporadically or in the context of neurofibromatosis type 1 (NF1). MPNST diagnosis can be challenging and treatment outcomes are poor. We present here a resource consisting of the genomic characterization of 9 widely used human MPNST cell lines for their use in translational research. NF1-related cell lines recapitulated primary MPNST copy number profiles, exhibited NF1 , CDKN2A , and SUZ12/EED tumor suppres-sor gene (TSG) inactivation, and presented no gain-of-function mutations. In contrast, sporadic cell lines collectively displayed different TSG inactivation patterns and presented kinase-activating mutations, fusion genes, altered muta-tional frequencies and COSMIC signatures, and different methylome-based clas-sifications. Cell lines re-classified as melanomas and other sarcomas exhibited a different drug-treatment response. Deep genomic analysis, methylome-based classification, and cell-identity marker expression, challenged the identity of common MPNST cell lines, opening an opportunity to revise MPNST differential diagnosis

    Modeling iPSC-derived human neurofibroma-like tumors in mice uncovers the heterogeneity of Schwann cells within plexiform neurofibromas

    Get PDF
    Plexiform neurofibromas (pNFs) are developmental tumors that appear in neurofibromatosis type 1 individuals, constituting a major source of morbidity and potentially transforming into a highly metastatic sarcoma (MPNST). pNFs arise after NF1 inactivation in a cell of the neural crest (NC)-Schwann cell (SC) lineage. Here, we develop an iPSC-based NC-SC in vitro differentiation system and construct a lineage expression roadmap for the analysis of different 2D and 3D NF models. The best model consists of generating heterotypic spheroids (neurofibromaspheres) composed of iPSC-derived differentiating NF1(-/-) SCs and NF1(+/-) pNF-derived fibroblasts (Fbs). Neurofibromaspheres form by maintaining highly proliferative NF1(-/-) cells committed to the NC-SC axis due to SC-SC and SC-Fb interactions, resulting in SC linage cells at different maturation points. Upon engraftment on the mouse sciatic nerve, neurofibromaspheres consistently generate human NF-like tumors. Analysis of expression roadmap genes in human pNF single-cell RNA-seq data uncovers the presence of SC subpopulations at distinct differentiation states
    corecore