14 research outputs found

    Superconducting qubit based on twisted cuprate van der Waals heterostructures

    Full text link
    Van-der-Waals (vdW) assembly enables the fabrication of novel Josephson junctions utilizing an atomically sharp interface between two exfoliated and relatively twisted Bi2Sr2CaCu2O8+x\rm{Bi_2Sr_2CaCu_2O_{8+x}} (Bi2212) flakes. In a range of twist angles around 45∘45^\circ, the junction provides a regime where the interlayer two-Cooper pair tunneling dominates the current-phase relation. Here we propose to employ this novel junction to realize a capacitively shunted qubit that we call flowermon. The dd-wave nature of the order parameter endows the flowermon with inherent protection against charge-noise-induced relaxation and quasiparticle-induced dissipation. This inherently protected qubit paves the way to a new class of high-coherence hybrid superconducting quantum devices based on unconventional superconductors.Comment: 6+5 pages, 4+4 figure

    Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations

    Get PDF
    As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum non-demolition projective measurements within a time interval much shorter than T1T_1, using a quantum limited amplifier (Josephson Parametric Converter). The quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in magnetic field

    Imaging phonon-mediated hydrodynamic flow in WTe2

    Full text link
    In the presence of interactions, electrons in condensed-matter systems can behave hydrodynamically, exhibiting phenomena associated with classical fluids, such as vortices and Poiseuille flow. In most conductors, electron-electron interactions are minimized by screening effects, hindering the search for hydrodynamic materials; however, recently, a class of semimetals has been reported to exhibit prominent interactions. Here we study the current flow in the layered semimetal tungsten ditelluride by imaging the local magnetic field using a nitrogen-vacancy defect in a diamond. We image the spatial current profile within three-dimensional tungsten ditelluride and find that it exhibits non-uniform current density, indicating hydrodynamic flow. Our temperature-resolve current profile measurements reveal a non-monotonic temperature dependence, with the strongest hydrodynamic effects at approximately 20 K. We also report ab initio calculations showing that electron-electron interactions are not explained by the Coulomb interaction alone, but are predominantly mediated by phonons. This provides a promising avenue in the search for hydrodynamic flow and prominent electron interactions in high-carrier-density materials.Comment: 11 pages, 4 figures + supplementary materia

    Quantum bits with Josephson junctions

    Full text link
    Already in the first edition of this book (Barone and Paterno, "Fundamentals and Physics and Applications of the Josephson Effect", Wiley 1982), a great number of interesting and important applications for Josephson junctions were discussed. In the decades that have passed since then, several new applications have emerged. This chapter treats one such new class of applications: quantum optics and quantum information processing (QIP) based on superconducting circuits with Josephson junctions. In this chapter, we aim to explain the basics of superconducting quantum circuits with Josephson junctions and demonstrate how these systems open up new prospects, both for QIP and for the study of quantum optics and atomic physics.Comment: 30 pages, 10 figures. Book chapter for a new edition of Barone and Paterno's "Fundamentals and Physics and Applications of the Josephson Effect". Final versio

    Quantum reservoir engineering and single qubit cooling

    No full text
    International audienceStabilizing a quantum system in a desired state has important implications in quantum information science. In control engineering, stabilization is usually achieved by the use of feedback. The closed-loop control paradigm consists of measuring the system in a non-destructive manner, analyzing in real-time the measurement output to estimate the dynamical state and finally, calculating a feedback law to stabilize the desired state. However, the rather short dynamical time-scales of most quantum systems impose important limitations on the complexity of real-time output signal analysis and retroaction. An alternative control approach for quantum state stabilization, bypassing a real-time analysis of output signal, is called reservoir engineering. In this paper, we start with a general description of quantum reservoir engineering. We then apply this method to stabilize the ground state (lowest energy state) of a single two-level quantum system. Applying the averaging theorem and some simple Lyapunov techniques, we prove the convergence of our proposed scheme. This scheme has recently been successfully implemented on a superconducting qubit and has led to a fast and reliable reset protocol for these qubit

    Nuclear Spin Assisted Magnetic Field Angle Sensing

    Full text link
    Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals. The nitrogen-vacancy (NV) center in diamond is one of the most promising platforms for real-world quantum sensing applications, predominantly used as a magnetometer. However, its magnetic field sensitivity vanishes when a bias magnetic field acts perpendicular to the NV axis. Here, we introduce a novel sensing strategy assisted by the nitrogen nuclear spin that uses the entanglement between the electron and nuclear spins to restore the magnetic field sensitivity. This, in turn, allows us to detect small changes in the magnetic field angle relative to the NV axis. Furthermore, based on the same underlying principle, we show that the NV coupling strength to magnetic noise, and hence its coherence time, exhibits a strong asymmetric angle dependence. This allows us to uncover the directional properties of the local magnetic environment and to realize maximal decoupling from anisotropic noise.Comment: 15 pages, 4 figures in main text + 11 pages, 8 figures in supplementary informatio

    Preturbulence in momentum-relaxing Navier-Stokes hydrodynamics

    No full text
    6+3 pages, 7 figuresIn a hydrodynamic regime of electronic fluids, the electron scattering on impurities and phonons inhibits the development of oscillating preturbulent phenomena (such as the Kármán vortex shedding) and enforces a laminar flow. Working in a local generalization of the Navier-Stokes hydrodynamics of incompressible two-dimensional fluids, we show that the critical relaxation time separating these two regimes is described by a surprisingly simple fractional power function of the Reynolds number. The critical exponent, α 4/3, sets particular experimental conditions for the observation of preturbulent effects in electronic fluids
    corecore