286 research outputs found

    Absolute Configuration of β-Hydroxy-β-phenylpropionic acid*

    Get PDF
    (+)-Methyl β-methoxy-β-phenylpropionate (VIII) was prepared from (+)-mandelic acid and from (+)-β-hydroxy-β-phenylpropionic acid (I). In this way the configuration of I was correlated with that of mandelic acid

    \u3csup\u3e26\u3c/sup\u3eAl-Containing Acidic and Basic Sodium Aluminum Phosphate Preparation and Use in Studies of Oral Aluminum Bioavailability from Foods Utilizing \u3csup\u3e26\u3c/sup\u3eAl as an Aluminum Tracer

    Get PDF
    We synthesized 26Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down (∼3000- and 850-fold) to prepare ∼300–400 mg of each SALP. The 26Al was incorporated at the beginning of the syntheses to maximize 26Al and 27Al equilibration and incorporate the 26Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The 26Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the 26Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was ∼0.02% and from basic SALP in cheese ∼0.05%, lower than our previous determination of Al bioavailability from drinking water, ∼0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake

    Optical Characterization of Silver Nanorod Thin Films Grown Using Oblique Angle Deposition

    Get PDF
    Nanorods are metamaterial structures that have been shown to have wide application, ranging from biomedical uses to photovoltaic materials. These materials have unique optical characteristics. In this paper, two silver (Ag) nanorod thin-film samples are created using Glancing Angle Deposition (GLAD) at both near-room temperature (~300 K) and cryogenic temperature (~100 K). Generalized ellipsometry is used to measure the optical constants of the samples. The strong difference between the optical constants of the constituent materials and those of these thin films shows that the characteristics of the samples are due to how their metamaterial structures are defined. The principle optical axes of the films align well with the morphological characteristics of the nanostructures. The axis with the greatest index of refraction remains aligned to the principle axes but shifts orientation with respect to morphological characteristics between samples. Experimental results show differences in both magnitude and characteristics of the nanorod indexes. Reflectance and transmittance measurements are performed to extract absorptance data. The room temperature deposited sample shows a higher overall absorptance, while the cryogenic sample shows a clear orientation-dependent absorptance. Polarization data is analyzed to show that the 100 K thin film exhibits polarization-dependent absorptance, while the 300 K sample’s absorptance has a strong orientation dependence

    Optical Characterization of Silver Nanorod Thin Films Grown Using Oblique Angle Deposition

    Get PDF
    Nanorods are metamaterial structures that have been shown to have wide application, ranging from biomedical uses to photovoltaic materials. These materials have unique optical characteristics. In this paper, two silver (Ag) nanorod thin-film samples are created using Glancing Angle Deposition (GLAD) at both near-room temperature (~300 K) and cryogenic temperature (~100 K). Generalized ellipsometry is used to measure the optical constants of the samples. The strong difference between the optical constants of the constituent materials and those of these thin films shows that the characteristics of the samples are due to how their metamaterial structures are defined. The principle optical axes of the films align well with the morphological characteristics of the nanostructures. The axis with the greatest index of refraction remains aligned to the principle axes but shifts orientation with respect to morphological characteristics between samples. Experimental results show differences in both magnitude and characteristics of the nanorod indexes. Reflectance and transmittance measurements are performed to extract absorptance data. The room temperature deposited sample shows a higher overall absorptance, while the cryogenic sample shows a clear orientation-dependent absorptance. Polarization data is analyzed to show that the 100 K thin film exhibits polarization-dependent absorptance, while the 300 K sample’s absorptance has a strong orientation dependence

    On the Regularity of Optimal Transportation Potentials on Round Spheres

    Full text link
    In this paper the regularity of optimal transportation potentials defined on round spheres is investigated. Specifically, this research generalises the calculations done by Loeper, where he showed that the strong (A3) condition of Trudinger and Wang is satisfied on the round sphere, when the cost-function is the geodesic distance squared. In order to generalise Loeper's calculation to a broader class of cost-functions, the (A3) condition is reformulated via a stereographic projection that maps charts of the sphere into Euclidean space. This reformulation subsequently allows one to verify the (A3) condition for any case where the cost-fuction of the associated optimal transportation problem can be expressed as a function of the geodesic distance between points on a round sphere. With this, several examples of such cost-functions are then analysed to see whether or not they satisfy this (A3) condition.Comment: 24 pages, 4 figure

    Hyperspectral integrated computational imaging

    Get PDF
    Without Abstract In the past, optics has served mainly to render the world more easily visible to humans. Now, computers are increasingly employed to make sense of the visual world in ways that people cannot. With a new generation of optics, scientists and engineers are recasting visual scenes for interpretation exclusively by computers. To the human eye, these pictures appear distorted at best, or at worst look like visual noise, without discernable meaning. But to computers, such data are worth more than a thousand words. Optimizing complete vision-and-action systems for computers lies at the core of integrated computational imaging. Computers are well-established manipulators of digitized images, and image-processing programs do it routinely on desktop machines. However, what is new is the strategy of modifying image information as it is sensed to make it better suited for the "computer mind" For example, rather than the customary concave and convex disks, optical engineers are fabricating strangely shaped, fundamentally different lenses adapted to the strong points of computers. These optics diverge from the traditional approach in which lenses form something humans recognize as an image. In nature, some beetles navigate by detecting certain colors or the polarization of light in air without forming an image from the data. Scientists have been slow to explore such alternatives, however, because they have modeled optical instruments such as cameras after our own image-rendering eyes. The revolution in integrated computational imaging extends beyond just lenses, however. A new trend in hyperspectral imaging is to speed the visual data processing and reduce data storage requirements by downloading some of the computation to the sensing detector itself. In many cases the detector array can perform both feature extraction (of both physical and spectral features) and encoding of these features. The codes are transmitted by the array to the computer, integrating the computation and imaging (ICI) to reduce the huge data load and speed the processing. Similarly, molecular computing in a multiplex image bandpass spectrometer can accomplish hyperspectral imaging as spatial integrated computational imaging performs feature extractio

    Solid Freeform Fabrication of Transparent Fused Quartz using a Filament Fed Process

    Get PDF
    Glass is a critical material for many scientific and engineering applications including optics, communications, electronics, and hermetic seals. Despite this technological relevance, there has been minimal research toward Additive Manufacturing (AM) of glass, particularly optically transparent glass. Additive Manufacturing of transparent glass offers potential advantages for lower processing costs for small production volumes, increased design freedom, and the ability to locally vary the optical properties of the part. Compared to common soda lime glass, fused quartz is better for AM since it has lower thermal expansion and higher index homogeneity. This paper presents a study of additive manufacturing of transparent fused quartz by a filament fed process. A CW CO2 laser (10.6 µm) is used to melt glass filaments layer by layer. The laser couples to phononic modes in the glass and is well absorbed. The beam and melt pool are stationary while the work piece is scanned using a standard lab motion system. Representative parts are built to explore the effects of variable laser power on the properties of printed fused quartz. During printing the incandescent emission from the melt pool is measured using a spectrometer. This permits process monitoring and identifies potential chemical changes in the glass during printing. After deposition, the printed parts are polished and the transmission measured to calculate the absorption/scattering coefficient. Finally, a low-order thermal analysis is presented and correlated to experimental results, including an energy balance and finite volume analysis using Fluent. These results suggest that optical quality fused quartz parts with low absorption and high index of refraction uniformity may be printed using the filament-fed process

    Investigating diagrammatic reasoning with deep neural networks

    Get PDF
    Diagrams in mechanised reasoning systems are typically en- coded into symbolic representations that can be easily processed with rule-based expert systems. This relies on human experts to define the framework of diagram-to-symbol mapping and the set of rules to reason with the symbols. We present a new method of using Deep artificial Neu- ral Networks (DNN) to learn continuous, vector-form representations of diagrams without any human input, and entirely from datasets of dia- grammatic reasoning problems. Based on this DNN, we developed a novel reasoning system, Euler-Net, to solve syllogisms with Euler diagrams. Euler-Net takes two Euler diagrams representing the premises in a syl- logism as input, and outputs either a categorical (subset, intersection or disjoint) or diagrammatic conclusion (generating an Euler diagram rep- resenting the conclusion) to the syllogism. Euler-Net can achieve 99.5% accuracy for generating syllogism conclusion. We analyse the learned representations of the diagrams, and show that meaningful information can be extracted from such neural representations. We propose that our framework can be applied to other types of diagrams, especially the ones we don’t know how to formalise symbolically. Furthermore, we propose to investigate the relation between our artificial DNN and human neural circuitry when performing diagrammatic reasoning
    corecore