68 research outputs found

    Effects of methamphetamine on locomotor activity and thalamic gene expression in leptin-deficient obese mice

    Get PDF
    Leptin is an adipose-derived hormone that regulates energy balance. Leptin receptors are expressed in extrahypothalamic sites and several reports showed that leptin can influence feeding and locomotor behavior via direct actions on dopaminergic neurons. The leptin deficient mouse (ob/ob) has been used as an animal model of blunted leptin action, and presents with obesity and mild type 2 diabetes. We used ob/ob mice to study the effect of repeated 7-day methamphetamine (METH) administration analyzing locomotion, behavioral sensitization, and somatosensory thalamic mRNA expression of voltage-gated calcium channels and glutamatergic receptors using RT-PCR. We observed reduced METH-mediated responses in ob/ob mice associated with enhanced in mRNA expression of key voltage-gated and glutamate receptors in the somatosensory thalamus. Results described here are important for understanding the control of locomotion and thalamocortical excitability by leptin.Fil: Gonzalez, Betina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Gonzalez, Candela Rocio. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Gamma oscillations in the pedunculopontine nucleus are regulated by F-actin: neuroepigenetic implications

    Get PDF
    The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 μM, a promoter of F-actin stabilization), or latrunculin-B (1 μM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.Fil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Garcia Rill, Edgar. University of Arkansas for Medical Sciences; Estados Unido

    The Critical Role of Intrinsic Membrane Oscillations

    Get PDF
    Intrinsic, rhythmic subthreshold oscillations have been described in neurons of regions throughout the brain and have been found to influence the timing of action potentials induced by synaptic inputs. Some oscillations are sodium channel-dependent while others are calcium channel-dependent. These oscillations allow neurons to fire coherently at preferred frequencies and represent the main mechanism for maintaining high frequency network activity, especially in the cortex. Because cortical circuits are incapable of maintaining high frequency activity in the gamma range for prolonged periods, those processes dependent on continuous gamma band activity are subserved by subthreshold oscillations. As such, intrinsic oscillations, coupled with synaptic circuits, are essential to prolonged maintenance of such functions as sensory perception and "binding", problem solving, memory, waking, and rapid eye movement (REM) sleep.Fil: Lee, Sang-Hun. Center For Translational Neuroscience; Estados UnidosFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Garcia Rill, Edgar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse

    Get PDF
    Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. We found that these channels can be activated in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. A drop in extracellular pH induces transient inward ASIC currents (IASICs) in postsynaptic MNTB neurons from wild-type mice. The inhibition of IASICs by psalmotoxin-1 (PcTx1) and the absence of these currents in knock-out mice for ASIC-1a subunit (ASIC1a−/−) suggest that homomeric ASIC-1as are mediating these currents in MNTB neurons. Furthermore, we detect ASIC1a-dependent currents during synaptic transmission, suggesting an acidification of the synaptic cleft due to the corelease of neurotransmitter and H+ from synaptic vesicles. These currents are capable of eliciting action potentials in the absence of glutamatergic currents. A significant characteristic of these homomeric ASIC-1as is their permeability to Ca2+. Activation of ASIC-1a in MNTB neurons by exogenous H+ induces an increase in intracellular Ca2+. Furthermore, the activation of postsynaptic ASIC-1as during high-frequency stimulation (HFS) of the presynaptic nerve terminal leads to a PcTx1-sensitive increase in intracellular Ca2+ in MNTB neurons, which is independent of glutamate receptors and is absent in neurons from ASIC1a−/− mice. During HFS, the lack of functional ASICs in synaptic transmission results in an enhanced short-term depression of glutamatergic EPSCs. These results strongly support the hypothesis of protons as neurotransmitters and demonstrate that presynaptic released protons modulate synaptic transmission by activating ASIC-1as at the calyx of Held–MNTB synapse.Fil: González Inchauspe, Carlota María Fabiola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Di Guilmi, Mariano Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Uchitel, Osvaldo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Differential alterations of intracellular [Ca2+] dynamics induced by cocaine and methylphenidate in thalamocortical ventrobasal neurons

    Get PDF
    The ventrobasal (VB) thalamus relay nucleus processes information from rodents? whiskers, projecting to somatosensory cortex. Cocaine and methylphenidate (MPH) have been described to differentially alter intrinsic properties of, and spontaneous GABAergic input to, VB neurons. Here we studied using bis-fura 2 ratiometric fluorescence the effects of cocaine and MPH on intracellular [Ca2+] dynamics at the soma and dendrites of VB neurons.Cocaine increased baseline fluorescence in VB somatic and dendritic compartments. Peak and areas of fluorescence amplitudes were reduced by cocaine binge treatment in somas and dendrites at different holding potentials. MPH binge treatment did not alter ratiometric fluorescence at either somatic or dendritic levels. These novel cocaine-mediated blunting effects on intracellular [Ca2+] might account for alterations in the capacity of thalamocortical neurons to maintain gamma band oscillations, as well as their ability to integrate synaptic afferents.Fil: Rozas, José L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Goitia, Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Pedunculopontine arousal system physiology - Implications for schizophrenia

    Get PDF
    Schizophrenia is characterized by major sleep/wake disturbances including increased vigilance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-related symptoms include sensory gating deficits as exemplified by decreased habituation of the blink reflex. There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease. Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.Fil: Garcia Rill, Edgar. University Of Arkansas For Medical Sciences; Estados UnidosFil: D'Onofrio, Stasia. University Of Arkansas For Medical Sciences; Estados UnidosFil: Mahaffey, Susan. University Of Arkansas For Medical Sciences; Estados UnidosFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Pedunculopontine arousal system physiology– deep brain stimulation (DBS)

    Get PDF
    This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders.Fil: Garcia Rill, Edgar. University Of Arkansas For Medical Sciences; Estados UnidosFil: Luster, Brennon. University Of Arkansas For Medical Sciences; Estados UnidosFil: D'Onofrio, Stasia. University Of Arkansas For Medical Sciences; Estados UnidosFil: Mahaffey, Susan. University Of Arkansas For Medical Sciences; Estados UnidosFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas (i); Argentina. Universidad de Buenos Aires; Argentin

    CaV2.1 voltage activated calcium channels and synaptic transmission in familial hemiplegic migraine pathogenesis

    Get PDF
    Studies on the genetic forms of epilepsy, chronic pain, and migraine caused by mutations in ion channels have given crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological disorders. In this review we focus on the role of mutated CaV2.1 (i.e., P/Q-type) voltage-activated Ca2+ channels, and on the ultimate consequences that mutations causing familial hemiplegic migraine type-1 (FHM1) have in neurotransmitter release. Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of CaV2.1 channels. Mutated CaV2.1 channels activate at more hyperpolarizing potentials and lead to a gain-of-function in synaptic transmission. This gain-of-function might underlie alterations in the excitatory/ inhibitory balance of synaptic transmission, favoring a persistent state of hyperexcitability in cortical neurons that would increase the susceptibility for cortical spreading depression (CSD), a mechanism believed to initiate the attacks of migraine with aura.Fil: Uchitel, Osvaldo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: González Inchauspe, Carlota María Fabiola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Di Guilmi, Mariano Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Gamma band activity in the developing parafascicular nucleus

    Get PDF
    The parafascicular nucleus (Pf) receives cholinergic input from the pedunculopontine nucleus, part of the reticular activating system involved in waking and rapid eye movement (REM) sleep, and sends projections to the cortex. We tested the hypothesis that Pf neurons fire maximally at gamma band frequency (30–90 Hz), that this mechanism involves high-threshold voltage-dependent P/Q- and N-type calcium channels, and that this activity is enhanced by the cholinergic agonist carbachol (CAR). Patch-clamped 9- to 25-day-old rat Pf neurons (n = 299) manifested a firing frequency plateau at gamma band when maximally activated (31.5 ± 1.5 Hz) and showed gamma oscillations when voltage-clamped at holding potentials above −20 mV, and the frequency of the oscillations increased significantly with age (24.6 ± 3.8 vs. 51.6 ± 4.4 Hz, P < 0.001) but plateaued at gamma frequencies. Cells exposed to CAR showed significantly higher frequencies early in development compared with those without CAR (24.6 ± 3.8 vs. 41.7 ± 4.3 Hz, P < 0.001) but plateaued with age. The P/Q-type calcium channel blocker ω-agatoxin-IVA (ω-Aga) blocked gamma oscillations, whereas the N-type blocker ω-conotoxin-GVIA (ω-CgTx) only partially decreased the power spectrum amplitude of gamma oscillations. The blocking effect of ω-Aga on P/Q-type currents and ω-CgTx on N-type currents was consistent over age. We conclude that P/Q- and N-type calcium channels appear to mediate Pf gamma oscillations during development. We hypothesize that the cholinergic input to the Pf could activate these cells to oscillate at gamma frequency, and perhaps relay these rhythms to cortical areas, thus providing a stable high-frequency state for “nonspecific” thalamocortical processing.Fil: Kezunovic, Nebojsa. University Of Arkansas For Medical Sciences; Estados UnidosFil: Hyde, James. University Of Arkansas For Medical Sciences; Estados UnidosFil: Simon, Christen. University Of Arkansas For Medical Sciences; Estados UnidosFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Williams, D. Keith. University Of Arkansas For Medical Sciences; Estados UnidosFil: Garcia Rill, Edgar. University Of Arkansas For Medical Sciences; Estados Unido

    Leptin alters somatosensory thalamic networks by decreasing gaba release from reticular thalamic nucleus and action potential frequency at ventrobasal neurons

    Get PDF
    Leptin is an adipose-derived hormone that controls appetite and energy expenditure. Leptin receptors are expressed on extra-hypothalamic ventrobasal (VB) and reticular thalamic (RTN) nuclei from embryonic stages. Here, we studied the effects of pressure-puff, local application of leptin on both synaptic transmission and action potential properties of thalamic neurons in thalamocortical slices. We used whole-cell patch-clamp recordings of thalamocortical VB neurons from wild-type (WT) and leptin-deficient obese (ob/ob) mice. We observed differences in VB neurons action potentials and synaptic currents kinetics when comparing WT vs. ob/ob. Leptin reduced GABA release onto VB neurons throughout the activation of a JAK2-dependent pathway, without affecting excitatory glutamate transmission. We observed a rapid and reversible reduction by leptin of the number of action potentials of VB neurons via the activation of large conductance Ca 2+ -dependent potassium channels. These leptin effects were observed in thalamocortical slices from up to 5-week-old WT but not in leptin-deficient obese mice. Results described here suggest the existence of a leptin-mediated trophic modulation of thalamocortical excitability during postnatal development. These findings could contribute to a better understanding of leptin within the thalamocortical system and sleep deficits in obesity.Fil: Perissinotti, Paula Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Rivero Echeto, Maria Celeste Solange. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Garcia Rill, Edgar. University of Arkansas for Medical Sciences; Estados UnidosFil: Bisagno, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin
    corecore