13,674 research outputs found

    Nonlinear effects of phonon fluctuations on transport through nanoscale junctions

    Full text link
    We analyze the effect of electron-phonon coupling on the full counting statistics of a molecular junction beyond the lowest order perturbation theory. Our approach allows to take into account analytically the feedback between the non-equilibrium phonon and electronic distributions in the quantum regime. We show that even for junctions with high transmission and relatively weak electron-phonon coupling this feedback gives rise to increasingly higher nonlinearities in the voltage dependence of the cumulants of the transmitted charges distribution.Comment: 4 pages, 3 figure

    Two-fluid model for a rotating trapped Fermi gas in the BCS phase

    Full text link
    We investigate the dynamical properties of a superfluid gas of trapped fermionic atoms in the BCS phase. As a simple example we consider the reaction of the gas to a slow rotation of the trap. It is shown that the currents generated by the rotation can be understood within a two-fluid model similar to the one used in the theory of superconductors, but with a position dependent ratio of normal and superfluid densities. The rather general result of this paper is that already at very low temperatures, far below the critical one, an important normal-fluid component appears in the outer regions of the gas. This renders the experimental observation of superfluidity effects more difficult and indicates that reliable theoretical predictions concerning other dynamical properties, like the frequencies of collective modes, can only be made by taking into account temperature effects.Comment: 6 pages, 4 figure

    Gravitational particle production in braneworld cosmology

    Full text link
    Gravitational particle production in time variable metric of an expanding universe is efficient only when the Hubble parameter HH is not too small in comparison with the particle mass. In standard cosmology, the huge value of the Planck mass MPlM_{Pl} makes the mechanism phenomenologically irrelevant. On the other hand, in braneworld cosmology the expansion rate of the early universe can be much faster and many weakly interacting particles can be abundantly created. Cosmological implications are discussed.Comment: 4 pages, 1 figure, v3 with new definition of Λ\Lambda and minor text modification

    Coupling of hydrodynamics and quasiparticle motion in collective modes of superfluid trapped Fermi gases

    Full text link
    At finite temperature, the hydrodynamic collective modes of superfluid trapped Fermi gases are coupled to the motion of the normal component, which in the BCS limit behaves like a collisionless normal Fermi gas. The coupling between the superfluid and the normal components is treated in the framework of a semiclassical transport theory for the quasiparticle distribution function, combined with a hydrodynamic equation for the collective motion of the superfluid component. We develop a numerical test-particle method for solving these equations in the linear response regime. As a first application we study the temperature dependence of the collective quadrupole mode of a Fermi gas in a spherical trap. The coupling between the superfluid collective motion and the quasiparticles leads to a rather strong damping of the hydrodynamic mode already at very low temperatures. At higher temperatures the spectrum has a two-peak structure, the second peak corresponding to the quadrupole mode in the normal phase.Comment: 14 pages; v2: major changes (effect of Hartree field included

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    Anderson impurity model in nonequilibrium: analytical results versus quantum Monte Carlo data

    Full text link
    We analyze the spectral function of the single-impurity two-terminal Anderson model at finite voltage using the recently developed diagrammatic quantum Monte Carlo technique as well as perturbation theory. In the (particle-hole-)symmetric case we find an excellent agreement of the numerical data with the perturbative results of second order up to interaction strengths U/Γ≈2U/\Gamma \approx 2, where Γ\Gamma is the transparency of the impurity-electrode interface. The analytical results are obtained in form of the nonequilibrium self-energy for which we present explicit formulas in the closed form at arbitrary bias voltage. We observe an increase of the spectral density around zero energy brought about by the Kondo effect. Our analysis suggests that a finite applied voltage VV acts as an effective temperature of the system. We conclude that at voltages significantly larger than the equilibrium Kondo temperature there is a complete suppression of the Kondo effect and no resonance splitting can be observed. We confirm this scenario by comparison of the numerical data with the perturbative results.Comment: 8 pages, 6 figure

    Rabi flopping between ground and Rydberg states with dipole-dipole atomic interactions

    Full text link
    We demonstrate Rabi flopping of small numbers of 87Rb\rm{^{87}Rb} atoms between ground and Rydberg states with n≤43n\le 43. Coherent population oscillations are observed for single atom flopping, while the presence of two or more atoms decoheres the oscillations. We show that these observations are consistent with van der Waals interactions of Rydberg atoms.Comment: 4 pages, 6 figure

    Do Lognormal Column-Density Distributions in Molecular Clouds Imply Supersonic Turbulence?

    Full text link
    Recent observations of column densities in molecular clouds find lognormal distributions with power-law high-density tails. These results are often interpreted as indications that supersonic turbulence dominates the dynamics of the observed clouds. We calculate and present the column-density distributions of three clouds, modeled with very different techniques, none of which is dominated by supersonic turbulence. The first star-forming cloud is simulated using smoothed particle hydrodynamics (SPH); in this case gravity, opposed only by thermal-pressure forces, drives the evolution. The second cloud is magnetically subcritical with subsonic turbulence, simulated using nonideal MHD; in this case the evolution is due to gravitationally-driven ambipolar diffusion. The third cloud is isothermal, self-gravitating, and has a smooth density distribution analytically approximated with a uniform inner region and an r^-2 profile at larger radii. We show that in all three cases the column-density distributions are lognormal. Power-law tails develop only at late times (or, in the case of the smooth analytic profile, for strongly centrally concentrated configurations), when gravity dominates all opposing forces. It therefore follows that lognormal column-density distributions are generic features of diverse model clouds, and should not be interpreted as being a consequence of supersonic turbulence.Comment: 6 pages, 6 figures, accepted for publication in MNRA
    • …
    corecore