13,278 research outputs found

    Atomic defects and dopants in ternary Z-phase transition-metal nitrides CrMN with M=V, Nb, Ta investigated with density functional theory

    Full text link
    A density functional theory study of atomic defects and dopants in ternary Z-phase transition-metal nitrides CrMN with M=V, Nb, or Ta is presented. Various defect formation energies of native point defects and of substitutional atoms of other metal elements which are abundant in the steel as well, are evaluated. The dependence thereof on the thermodynamic environment, i.e. the chemical conditions of a growing Z-phase precipitate, is studied and different growth scenarios are compared. The results obtained may help to relate results of experimental atomic-scale analysis, by atom probe tomography or transmission electron microscopy, to the theoretical modeling of the formation process of the Z phase from binary transition metal nitrides

    Does the speed of light depend upon the vacuum ?

    Full text link
    We propose a quantum model for the vacuum filled of virtual particle pairs. The main originality of this model is to define a density and a life-time of the virtual particles. Compared to the usual QED (p,E)(p,E) framework, we add here the (x,t)(x,t) space time parameters. We show how ϵ0\epsilon_0 and μ0\mu_0 originate from the polarization and the magnetization of these virtual pairs when the vacuum is stressed by an electrostatic or magnetostatic field respectively. We obtain numerical values very close to the measured values. The exact equalities constraint the free parameters of our vacuum model. Then we show that if we simply model the propagation of a photon in vacuum as a succession of transient captures with virtual pairs, we can derive a finite velocity of the photon with a magnitude close to the measured speed of light cc. Again this is the occasion to adjust better our vacuum model. Since the transit time of a photon is a statistical process we expect it to be fluctuating and this translates into a fluctuation of cc which, if measured, would bring another piece of information on the vacuum. When submitted to a stress the vacuum may change and this will induce a variation in the electromagnetic constants. We show this to be the case around a gravitational mass. It gives a physical interpretation of a varying vacuum refractive index equivalent to the curved space-time in General Relativity. The known measurements of the deflection of light by a mass, the Shapiro delay and the gravitational redshift do bring constraints on the way inertial masses should depend upon the vacuum. At last some experimental predictions are proposed.Comment: 25 page

    Full sky harmonic analysis hints at large UHECR deflections

    Full text link
    The full-sky multipole coefficients of the ultra-high energy cosmic ray (UHECR) flux have been measured for the first time by the Pierre Auger and Telescope Array collaborations using a joint data set with E > 10 EeV. We calculate these harmonic coefficients in the model where UHECR are protons and sources trace the local matter distribution, and compare our results with observations. We find that the expected power for low multipoles (dipole and quadrupole, in particular) is sytematically higher than in the data: the observed flux is too isotropic. We then investigate to which degree our predictions are influenced by UHECR deflections in the regular Galactic magnetic field (GMF). It turns out that the UHECR power spectrum coefficients Câ„“C_\ell are quite insensitive to the effects of the GMF, so it is unlikely that the discordance can be reconciled by tuning the GMF model. On the contrary, a sizeable fraction of uniformly distributed flux (representing for instance an admixture of heavy nuclei with considerably larger deflections) can bring simulations and observations to an accord.Comment: 8 pages, 4 figures and one table, JETPL style -- v2 as published in JETP

    Rashba spin-orbit interaction in graphene armchair nanoribbons

    Get PDF
    We study graphene nanoribbons (GNRs) with armchair edges in the presence of Rashba spin-orbit interaction (RSOI). We impose the boundary conditions on the tight binding Hamiltonians for bulk graphene with RSOI by means of a sine transform and study in detail the influence of RSOI on the spectra and the spin polarization. We show that the spin polarization perpendicular to the GNR changes sign when reversing the momentum along the GNR if the bands are coupled by strong RSOI. Furthermore, we derive a linearized approximation to the RSOI Hamiltonian and find that only the neighboring modes of an energy band have to be taken into account in order to achieve a good approximation for the same band. Due to their experimental availability and various proposals for engineering appropriate RSOI, GNRs with armchair edges are a promising candidate for possible spintronics applications.Comment: added journal reference, small updates, 9 pages, 8 figure

    Topological Phases for Fermionic Cold Atoms on the Lieb Lattice

    Full text link
    We investigate the properties of the Lieb lattice, i.e a face-centered square lattice, subjected to external gauge fields. We show that an Abelian gauge field leads to a peculiar quantum Hall effect, which is a consequence of the single Dirac cone and the flat band characterizing the energy spectrum. Then we explore the effects of an intrinsic spin-orbit term - a non-Abelian gauge field - and demonstrate the occurrence of the quantum spin Hall effect in this model. Besides, we obtain the relativistic Hamiltonian describing the Lieb lattice at low energy and derive the Landau levels in the presence of external Abelian and non-Abelian gauge fields. Finally, we describe concrete schemes for realizing these gauge fields with cold fermionic atoms trapped in an optical Lieb lattice. In particular, we provide a very efficient method to reproduce the intrinsic (Kane-Mele) spin-orbit term with assisted-tunneling schemes. Consequently, our model could be implemented in order to produce a variety of topological states with cold-atoms.Comment: 12 pages, 9 figure

    Adiabatic pumping in the quasi-one-dimensional triangle lattice

    Full text link
    We analyze the properties of the quasi-one-dimensional triangle lattice emphasizing the occurrence of flat bands and band touching via the tuning of the lattice hopping parameters and on-site energies. The spectral properties of the infinite system will be compared with the transmission through a finite piece of the lattice with attached semi-infinite leads. Furthermore, we investigate the adiabatic pumping properties of such a system: depending on the transmission through the lattice, this results in nonzero integer charge transfers or transfers that increase linearly with the lattice size
    • …
    corecore