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Abstract. We study graphene nanoribbons (GNRs) with armchair edges in the presence of Rashba spin-
orbit interactions (RSOI). We impose the boundary conditions on the tight binding Hamiltonians for bulk
graphene with RSOI by means of a sine transform and study the influence of RSOI on the spectra and
the spin polarization in detail. We derive the low energy approximation of the RSOI Hamiltonian for the
zeroth and first order in momentum and test their ranges of validity. The choice of a basis appropriate for
armchair boundaries is important in the case of mode-coupling effects and leads to results that are easy to
work with.

PACS. 81.05.ue Graphene – 75.70.Tj Spin-orbit effects – 85.75.-d Magnetoelectronics – 73.63.Bd
Nanocrystalline materials

1 Introduction

Spintronics is a multidisciplinary field whose central theme
is the active manipulation of the spin degree-of-freedom
in solid state systems [1]. The integration of spintron-
ics concepts into standard electronic devices is an im-
portant technological challenge for the semiconductor in-
dustry. The goal is the realization of devices, which for
equal sizes, have better performance and lower power con-
sumption with respect to state-of-the-art electronic de-
vices [2]. In this respect, graphene has great potential for
spintronics applications [3]. On the one hand it is char-
acterized by very weak spin-orbit interactions (SOIs) [4]
making pristine graphene the spintronics material with the
longest spin-coherence time [5]. On the other hand, there
are several promising proposals for manipulating the spin
states via local material engineering of the graphene mem-
brane [6,7,8].

There are two possible types of SOIs in graphene: in-
trinsic and Rashba (R). Both of them can be understood
in terms of the symmetry properties of the honeycomb
lattice [9] and by tight binding arguments [4]. The intrin-
sic SOI opens a gap in the energy spectrum and trans-
forms graphene into a two-dimensional topological insula-
tor [9]. However, intrinsic SOI is extremely weak in pris-
tine graphene.

The RSOI is mainly connected to the overlap of the
π and the σ orbitals of the carbon atoms in the sp2–
hybridization. It can be tuned by an electric field perpen-
dicular to the graphene plane or by the local curvature
of the graphene sheet [4]. Alternatively, it was proposed

that RSOI can be enhanced by modifying the bonding
within the graphene sheet, e.g. by covering it with hydro-
gen [10]. To the lowest order, also a rotating magnetic field
can induce effects that can be considered as an effective
RSOI [11]. The predicted RSOI strength for the former
two methods is of the order λ ∼ 1meV and approximately
one order of magnitude larger for the third method. In
an experimental study [6] it was shown that opportune
substrate engineering could even lead to λ ∼ 200 meV.
Thus there is reason to hope that manipulation of RSOI
in graphene will soon allow to realize RSOI based spin-
tronics devices. In this respect several efforts have already
been made in order to investigate the spintronics proper-
ties of bulk graphene, e.g. in the case of inhomogeneous
SOI structures [12,13,14,15,16,17,18].

However, particularly interesting for graphene is the
stripe geometry, the so-called graphene nanoribbon (GNR) [19].
So far GNRs with RSOI and zig-zag edges have been in-
tensely studied. For example, Zarea and Sandler [20] an-
alytically derived the energy spectrum of a zig-zag GNR
with RSOI produced by an electric field perpendicular to
the GNR surface. Gosálbez-Mart́ınez et al. [21] studied
RSOI produced by effects of curvature in zig-zag GNRs.
Also GNRs with hardwall boundary conditions and RSOI
received some attention [22]. On the contrary, armchair
GNRs with RSOI received little attention so far — despite
of their experimental availability. While large graphene
sheets are still polycrystalline and far from perfect, GNRs
with an armchair edge (cf. Fig. 1) have already been syn-
thesized with atomic precision and well defined edges [23].
In this case, the dangling σ–bonds of the GNRs were pas-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199420033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1210.2865v3


2 Lucia Lenz et al.: Rashba spin-orbit interaction in graphene armchair nanoribbons

d1

d
2

d3

x

y

a

W

K '

yq

xq

K

K '
K

K '

K
Unit Cell

Fig. 1. (color online) An armchair GNR of width W̃ = 4a,
where a is the width of the hexagon. The green and red dots
mark the A and B atoms of the honeycomb lattice, respec-
tively. The distance between the first missing rows of carbon
atoms is denoted by W = W̃ + a. The di are the displacement
vectors connecting nearest neighbor sites. The yellow rectangle
indicates the unit cell of the ribbon, with 4 × 4 + 2 atoms for
the width shown. The inset depicts the first Brillouin zone of
bulk graphene with the two inequivalent K, K′ points.

sivated with hydrogen, so that the sp2–hybridization is
preserved also along the edges.

In this article, we fill the gap and study armchair GNRs
with RSOI focusing on the influence of RSOI on the spec-
trum and the spin polarization. We derive a low energy
theory for the RSOI Hamiltonian starting from the tight
binding approach. Note, that when dealing with effects
that couple different modes, it is important to start di-
rectly from the tight binding approach and not from an
approximative description.

The article is organized as follows. Section 2 intro-
duces the system under investigation and reviews some
basic theory, followed by the presentation of our results
in Sec. 3. The RSOI Hamiltonian for an armchair GNR is
derived in Sec. 3.1 and linearized in order to investigate
armchair GNRs in the Dirac approximation in Sec. 3.2. We
obtain an analytic equation for the lowest energy bands
in Sec. 3.3, and finally investigate the effect of RSOI on
the spin polarization in Sec. 3.4. Specifically, we show that
the component of the spin-polarization perpendicular to
the ribbon axis changes sign when the momentum along
the axis of the GNR is reversed. This effect arises from
the coupling of the GNR bands induced by RSOI.

2 Basic Theory

2.1 Armchair graphene nanoribbons

We study armchair GNRs with the ribbon axis aligned
along the y-direction as depicted in Fig. 1. The ribbon
can be constructed by periodically repeating an unit cell,
highlighted by a yellow square, along the y-axis. This unit
cell contains four inequivalent atoms for every column of

the ribbon and two additional atoms in order to truncate
the ribbon in an armchair configuration. Note that in this
article, the distance W between the first missing rows of
atoms will be used instead of the actual width of the rib-
bon which is W̃ =W − a.

The first Brillouin zone of bulk graphene, which is a
hexagon rotated by π/2 with respect to the graphene lat-
tice, is shown in the inset of Fig. 1. In the absence of
RSOI, the conduction and valence bands touch in the two
inequivalent Dirac points, K and K ′, and disperse in a
conical shape.

2.2 Tight binding Hamiltonian

We consider a disorder free system at zero temperature.
Our starting point is the Hamiltonian in the tight bind-
ing approximation. The kinetic part restricted to nearest-
neighbor hopping is given by [24]

Hkin = −t
∑

i,j

∑

α

[b†α(Ri + dj)aα(Ri) + H.c.] (1)

with the hopping integral t ≈ 2.7 eV. The operator aα(Ri)
annihilates a quasiparticle on the A atom at lattice posi-
tion Ri and with spin α and b†α(Ri + dj) creates a quasi-
particle at the B atom at position (Ri + dj) with spin α.
The three displacement vectors

d1 =
a√
3
(0, 1), d2/3 =

a√
3

(

±
√
3

2
,−1

2

)

, (2)

connect nearest neighbor sites. Here a =
√
3acc is the

width of the hexagon and acc = 0.142 nm the carbon-
carbon distance. In the following, we choose units for which
~ ≡ 1. Furthermore, we use acc as our unit of length and
formally set acc = 1.

The RSOI Hamiltonian induced by, e.g. an electric field
perpendicular to the graphene sheet, is given by [20,26,25]

HSO = iλ
∑

i,j;α,β

b†α(Ri + dj)[(s× d̂j) · ẑ]α,βaβ(Ri) + H.c.

(3)

and has the form of a spin-dependent nearest-neighbor
hopping with hopping integral λ. Here ẑ is the unit vector
in z-direction, s is the vector of Pauli matrices associated
with the spin degree of freedom and d̂j are the normal-
ized displacement vectors. The Hamiltonian (3) lifts spin
degeneracy, since hopping between the A and B atoms is
accompanied by a spin-flip.

2.3 The Dirac approximation

In order to obtain the Dirac approximation of the nearest-
neighbor hopping Hamiltonian (1) the Fourier transform
is taken and expanded close to the Dirac points K =
(4π/(3a), 0) = (Kx, 0) and K

′ = −K [24]. This leads to

HDirac = vF(τzs0σxkx + τ0s0σyky), (4)
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Fig. 2. (color online) (a) Energy dispersion of bulk graphene in the presence of RSOI. The cut at constant qy = 0, marked in
red, is shown in (b). The blue dashed line is calculated taking into account HSO up to first order in k, for the green dashed line
only the zeroth order in k is used for HSO. (c)-(e) The same cut at qy = 0 evaluated for different RSOI strengths λ.

where kx/y are the wavevectors measured with respect to

theK-points and vF = (
√
3at)/2 is the Fermi velocity. The

σi, si and τi (i = x, y, z) are Pauli matrices representing
the A/B-sublattices, the fermionic spin, and the K/K ′

valley degree of freedom, respectively 1. The index 0 is
used for the unit matrix. Note that HDirac contains two
blocks HK

Dirac(kx) = HK′

Dirac(−kx) related by time-reversal
symmetry (TRS).

The RSOI Hamiltonian for bulk graphene in the Dirac
approximation up to zeroth order in the wavevector k [4,
9,25], and with our choice of coordinates reads

H0
SO =

3λ

2
(τ0σysx − τzσxsy). (5)

As before, the Hamiltonian obeys TRS but now explicitly
depends on the spin.

Before we proceed, let us focus on RSOI in bulk graphene
for later comparison. Figure 2 shows the energy spectra
of bulk graphene for different λ values. The spectra ob-
tained from the tight binding Hamiltonians (1) and (3)
(solid red lines) are compared to those of the linearized
nearest-neighbor hopping Hamiltonian (4) and the zeroth
order RSOI Hamiltonian (5) (dashed green line). In gen-
eral there is a good agreement in vicinity of the Dirac
points even for moderate λ. However, for λ ≈ 0.5t or

1 Here and in the following we have set ~ = 1.

larger, the occurrence of additional Dirac points is (natu-
rally) not captured. At least the first order expansion of
the RSOI Hamiltonian [28] (dashed blue lines) needs to
be considered in order to captures this effect (referred to
as triangular warping in bulk graphene) at least qualita-
tively.

2.4 Armchair boundary conditions for GNRs without
RSOI

We briefly review the boundary conditions for armchair
GNRs without RSOI in the Dirac approximation [27]. For
energies close to the Dirac points the wave function can be
written in terms of slowly varying envelope functions φK

and φK
′

. Without taking into account the spin degree of
freedom, these functions are two-component spinors and
eigenstates of one of the two equivalent upper blocks or
one of the two lower blocks of equation (4) in the (aK , bK)
or (aK′ , bK′) representation [24]. The wave function on
sublattice µ = A,B can be written as

ψµ(x, y) = eiKxxφKµ (x, y) + e−iKxxφK
′

µ (x, y), (6)

where x and y are continuous variables. The two functions
φKµ and φK

′

µ are expansions of the full wave function at the
two different Dirac points K and K ′ and the fast varying
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phases e±iKxx are required in order to bring both par-
tial wave functions back into the same coordinate system
(qx = ±Kx + kx).

For a ribbon that is cut at x = 0 and x =W , all wave
functions on the missing atoms have to be zero (cf. Fig. 1).
This leads to the boundary conditions

0=ψµ(0, y) = φKµ (0, y) + φK
′

µ (0, y), (7)

0=ψµ(W, y) = eiKxWφKµ (W, y) + e−iKxWφK
′

µ (W, y). (8)

The boundary condition (7) requires that spinors propa-
gating along the x-axis from the K valley are superim-
posed with spinors propagating in the opposite direction
from the K ′ valley and vise versa, since the corresponding
eigenvectors are equal due to TRS. The boundary condi-
tion (8) gives the quantization condition on kx,

k(n)x ≡ kn = −Kx +
πm

W
=
nπ

W
− 4γπ

3W
. (9)

The integer m ranging from m = 1 to M labels differ-
ent transverse modes with transversal wavevector qm =
πm/W . The total number of modes M is equal to half
the number of atoms in the unit cell, indicated by the yel-
low rectangle in Fig. 1. For the second equality sign in
(9) we rewrite W = a(3j + γ) with a positive integer j
and γ = −1, 0 or 1. The modes n range from −4j + 1 to
nmax = M − 4j = 4(2j + γ) − 2. The shifted modes n
are convenient to work with, because n = 0 corresponds
to the lowest energy bands. The energy spectrum of the
armchair GNR now reads

En,ǫ = ±vF
√

k2y + k2n, (10)

Only for γ = 0 the GNR is metallic, since a zero-energy
solution is possible for n = 0 and ky = 0. For γ = ±1, the
spectrum shows an energy gap equal to 2|q1| = 2π/W .
In the following we will focus on the effect of RSOI on
metallic GNRs, though the method employed is general
and also applicable if γ 6= 0.

Finally, using the qm as wavevector, the eigenstates of
the kinetic Hamiltonian that obey the boundary condi-
tions (7) and (8) are proportional to sine functions,

Ψǫ,n(x, y) ∝ eikyyΦK
kx,ky,ǫ sin(qmx) . (11)

Here, ΦK
kx,ky,ǫ

are the two-component eigenvectors of the

Dirac Hamiltonian of theK valley, depending on the wavevec-
tors of the exponential ansatz and on the sign of the
eigenenergy ǫ.

It is important to recall here, that, in order to ob-
tain the low energy approximations (4) and (5), the tight
binding Hamiltonians are expanded over a basis set of ex-
ponential wave functions. By definition these states do
not fulfill the armchair boundary conditions. In the case
of a graphene armchair nanoribbon without RSOI [27],
cf. Sec. 2.4, the standard approach outlined above is to
take the plane-wave basis set and then try to satisfy the
boundary conditions a posteriori by taking appropriate
linear combinations.
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Fig. 3. (color online) Energy spectra for a GNR ribbon of
width W = 12a and different strength of the RSOI, (a) λ = 0,
(b) λ = 0.01t, (c) λ = 0.1t and (d) λ = 0.5t. Note that an
energy gap opens at the Dirac points with increasing λ. This
is analyzed in detail in Fig. 4

The more natural choice of basis is to consider sine
functions instead, which form a complete basis for a sys-
tem with armchair boundary conditions. Both approaches
yield the same results as long as terms coupling differ-
ent modes in the sine transform vanish for the Hamilto-
nian under consideration – which indeed is the case for
the low energy kinetic Hamiltonian studied in Ref. [27].
On the other hand, the tight binding RSOI Hamiltonian
for a GNR couples different modes, and therefore the low
energy RSOI Hamiltonian of graphene (5) should not be
used, when armchair boundary conditions are studied. In
fact, trying to do so leads to non-Hermitian matrices, due
to the unbounded derivative operators which appear in
the expansion up to 1st order (and higher) [28] in the mo-
mentum of the RSOI Hamiltonian.

3 Armchair GNRs with RSOI

3.1 Sine transform

In order to study the effect of RSOI for the case of an
armchair GNR we need to expand the Hamiltonians on a
basis set that is naturally fulfilling the boundary condi-
tion. Therefore we take the sine transform of the aα(Ri)
and bα(Ri + dj) operators in the tight binding Hamilto-
nians (1) and (3). Taking the sine transform corresponds
to choosing a complete set of basis functions ∝ sin(qmx)
with wave vectors qm = πm/W . We use

aα(Ri) =

√

2

M + 1

∫ ∞

−∞
dqye

iqyyi

M
∑

m=1

sin(qmxi)aα(qm, qy), (12)
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and

bα(Ri + dj) =

√

2

M + 1

∫ ∞

−∞
dqye

iqy(yi+dj,y)

M
∑

m=1

sin [qm(xi + dj,x)] bα(qm, qy), (13)

where Ri = (xi, yi) and dj = (dj,x, dj,y) . The ribbon
is assumed to be infinite in y-direction, therefore a con-
tinuous wavevector qy can be used. Inserting the transfor-
mation (13) into equation (3) yields

HSO = λ

∫

dqy
∑

m,m′;α=±
{

(

Aintra
m,m′ + αAinter

m,m′

)

b†−α(qm, qy)aα(qm′ , qy)

+
(

Aintra
m′,m + αAinter

m′,m

)∗
a†α(qm, qy)b−α(qm′ , qy)

}

(14)

with

Aintra
m,m′ = i

[

e−iqy − eiqy/2 cos(
√
3qm/2)

]

δm,m′ , (15)

Ainter
m,m′ =

√
3ei

qy

2 sin(
√
3qm
2 )Bm,m′

[

1−(−1)m+m′

2

]

. (16)

Here δm,m′ is the Kronecker delta and

Bm,m′ =
1

M + 1

[

cot

(

π(m+m′)

2(M + 1)

)

− cot

(

π(m−m′)

2(M + 1)

)]

. (17)

We recall that throughout the paper the carbon-carbon-
distance acc is chosen as the unit of length. There are two
terms in the RSOI Hamiltonian: an intra mode and an
inter mode coupling term. Both couple states with differ-
ent spin, however, the former is coupling modes with the
same mode index m = m′, while the latter couples differ-
ent modes m 6= m′ with different parity — i.e. odd modes
with even modes. The intra mode coupling is a peculiarity
of GNRs associated to the two inequivalent carbon atoms
in the unit cell. No similar effect is present in quantum
wires with RSOI [29,30].

Finally, inserting Eqs. (12) and (13) in Hkin, leads to

Hkin = −t
∑

α=±

∫ ∞

−∞
dqy

M
∑

m=1

e−iqy

[

1 + 2ei
3qy

2 cos

(√
3qm
2

)]

b†α(qm, qy)aα(qm, qy) + H.c., (18)

where, of course, there is no coupling between different
modes.

Figure 3 shows GNR spectra for different RSOI strengths
λ. With increasing λ we first observe a splitting of the
bands, as spin degeneracy is lifted. The splitting is in-
creased for larger λ which leads to a deformation of the

bands due to avoided band crossings. Moreover, we ob-
serve that RSOI opens a small gap in the energy spectrum.
Finally, for even larger λ = 0.5t, we observe that higher
mode bands are pressing down and create an additional
minimum in the two lowest bands. A related creation of
additional Dirac points is known from bulk graphene (tri-
angular warping) [28] and occurs for similar values of SOI
strength, cf. Fig. 2 c–e. Note, however, that for the ribbon
geometry, we observe a spontaneous creation of additional
Dirac points at finite distance from the original ones and
not a continuous splitting of the Dirac points, as in bulk
graphene. Due to the coupling between the bands of the
GNR induced by RSOI, its dispersion relation can not be
related directly to the one of bulk graphene.

We note in passing that it is remarkable how strongly
the shape of the spectra depends on the widths, especially
for strong RSOI. When the width increases, the bands
come closer to each other and their deformation due to
avoided band crossings becomes stronger. In the contin-
uum limit they are merged onto the two spin split bands
of bulk graphene. Fig. 4 shows how the size of the band
gap ∆ and the position of the band minimum change as a
function of the GNR width. For narrow ribbons, the band
minimum is close to λ and moves to smaller values of qy
with increasing width. In the continuum limit we recover
the band minimum at qy = 0. The dependency of the band
gap on the width has a particularly interesting shape for
narrow ribbons. For larger ribbons the gap goes to zero as
expected from bulk graphene.

In the next section we will linearize the Hamiltonians
(14) and (18) and investigate for which parameter ranges
such a simplified model is valid.

3.2 Linearization

In this section, we will discuss the linearized versions of
the kinetic Hamiltonian (18) and the RSOI Hamiltonian
(14) with kn and ky being the small displacements from
theK point, i.e. qm = Kx+kn and qy = Ky+ky. A Taylor
series of (18) leads to the well-known Dirac Hamiltonian
with quantized wavevector,

[Hkin]n = vFs0(σxkn + σyky), (19)

with Hkin =
∫

dqy
∑

n ψ
†
n [Hkin]n ψn and

ψn = {a↑(kn, ky), b↑(kn, ky), a↓(kn, ky), b↓(kn, ky)}. On the
other hand, linearizing the coupling matrices (15) and (16)
around the K-point yields

Aintra
n,n′ ≃

(

3i
2 +

3(ky+ikn)
4

)

δn,n′ , (20)

Ainter
n,n′ ≃

(

1−(−1)n+n′

2

)

3
π(n′−n) ×

(

1− kn+kn′

4 +
iky

2

)

. (21)

Now, the linearized version of the intra mode RSOI
Hamiltonian (14) for modes n = n′ reads

[

Hintra
SO

]

n
=

3λ

2
sx

(

σy +
σxky + σykn

2

)

(22)
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Fig. 4. (color online) (a) Energy gap at the Dirac point as a
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point as a function of the width of the GNR. For both panels
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squares) and λ = 0.01t (black diamonds). Symbols are con-
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Fig. 5. (color online) Energy spectrum for a GNR of width
W = 12a and RSOI strength λ = 0.1t. The dashed, blue line
corresponds to the linear approximation, the solid red line cor-
responds to the exact result.

with Hintra
SO =

∫

dqy
∑

n ψ
†
n

[

Hintra
SO

]

n
ψn. Comparing the

constant terms to the linearized RSOI-Hamiltonian of the
infinite graphene plane H0

SO, cf. equation (5), we observe
that this is the same as adding the blocks for the K and
theK ′ valley and dividing by 1/2. This illustrates the cou-
pling of the two valleys induced by the armchair boundary
conditions.

For small but different kn 6= kn′ and small ky the ele-
ments of the inter mode RSOI Hamiltonian are given by

[

Hinter
SO

]

n,n′
= 3λ(1−(−1)n

′+n)
2πi(n′−n) sy ×

[

σx +
σyky

2 − σx(kn+kn′ )
4

]

(23)

where Hinter
SO =

∫

dqy
∑

n,n′ ψ†
n

[

Hinter
SO

]

n,n′
ψn′ . The main

point about equation (23) is that there is a contribution
coupling even and odd bands.

A comparison between the full solution and the lin-
earization (Fig. 5) shows, that the latter approximation
captures the spectrum very well for the first six bands.

The linearized Hamiltonian offers the opportunity to
discuss analytically the effects of the mode coupling in-
duced by (23). We start by considering uncoupled modes.
Then the states of mode n are obtained fromHn = [Hkin]n+
[

Hintra
SO

]

n
. From (19) and (22) we infer that the ψn are spin

polarized in x-direction and there is particle-hole symme-
try. Therefore we solve Hnψn,s,ε = εEn,sψn,s,ε and obtain

En,s = vF

√

[

ky + sλt
(

1 + kn

2

)]2
+
(

kn + sλt
ky

2

)2

(24)

ψn,s,ε =
{

sεeiϕn,s , s, εeiϕn,s, 1
}

(25)

ϕn,s = arg
[(

kn + sλt
ky

2

)

− i
(

ky + sλt
(

1 + kn

2

))

]

(26)

where s = ± is the spin quantum number and ε = ±
labels the positive/negative energy states. For small λ the
energies are

En,s/vF ≃
√

k2y + k2n +
sλ

t

ky(1 + kn)
√

k2y + k2n

+O(λ2) (27)

Note that for small RSOI the two states ψ±n,s,ε are almost
degenerate.

The inter mode coupling (23) has two important ef-
fects. First of all, it destroys the sx spin-polarization since
[

Hinter
SO

]

n,n′
∝ sy. Second, the nearly degeneracy of modes

ψ±n,s,ε is lifted and several avoided band crossings are
introduced. This is illustrated in Fig. 6 where the spec-
trum obtained without considering inter mode coupling is
compared to the result from the full linear approximation.
Note that the coupling to the neighboring bands shifts the
Dirac Point.

3.3 Analytic approximation for the lowest bands

The currently achievable spin-orbit interactions in phys-
ical systems are approximately two orders of magnitude
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Fig. 6. (color online) (a) Energy spectrum as a function of ky
for a GNR of width W = 12a and RSOI strength λ = 0.1t. The
dashed, black lines are obtained with the linear approximation
when neglecting the inter mode coupling (23). The solid blue
lines correspond to the linear approximation with the full cou-
pling between the transversal modes included. (b) Spectrum of
the same GNR but obtained from a reduced model including
the modes n = 0,±1 (dotted, black lines) and n = 0,±1,±2
(dashed, blue lines). The latter is in excelent agreement with
the exact result (solid red lines) in the energy range shown.

smaller than the hopping integral t [6]. Therefore, we study
a reduced model for the lowest mode bands, namely n = 0
(kn=0 = 0) and n = ±1 (kn=±1 = ±π/W ). We will show,
that this is enough to give a good description of the n = 0
mode, when the inter mode coupling is included. When
we are interested in a good approximation for the n = ±1
modes, then we need to include the n = ±2 modes as well.
The most simple approximation for the n = 0 mode is to
consider only H0, and obtain from (24) the close-to-linear
energy dispersion

E0,s = vF

√

(ky + sλ)2 +
k2yλ

2

4
. (28)

Here and in the following we set t ≡ 1. Equation (28)
demonstrates that the main correction due to RSOI is
the lifting of the spin degeneracy for the n = 0 mode
bands and a splitting of the Dirac point into two. Fur-
thermore, there is a term proportional to k2yλ

2, which
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Fig. 7. (color online) (a) Bandgap ∆ and (b) position qmin of
the band minimum as a function of the GNR width obtained
from the linearized Hamiltonian. The different symbols corre-
spond to considering reduced models containing the modes n =
0,±1 (stars), n = 0,±1,±2 (squares), and n = 0,±1, .. ± 10
(down triangles). The exact width dependence (green dots, c.f.
Fig. 4) is shown for comparison. (c) and (d) show the bandgap
and position of the band minimum obtained from truncating
the exact TB Hamiltonian corresponding to the selection of
modes given above.

opens a gap ∆ = vFλ
2/
√
4 + λ2 at the band minimum

kmin = λ/(1 + λ2/4) in the spectrum. Here, both ∆ and
kmin are independent of the width W which is a crude
approximation when comparing to Fig. 4. In fact, both
quantities are strongly influenced by the coupling with
the higher modes which increases with increasing W and
λ. In the limit of a very wide ribbon ∆ and kmin both tend
to zero, as expected from bulk graphene. While including
the next higher modes n = ±1 gives a fairly reasonable
agreement for the exact width dependence of kmin, a large
number of modes need to be considered in order to cap-
ture the exact width dependence of ∆. This is illustrated
in Fig. 7 which compares ∆ and kmin obtained from both,
the linearized (top panels) and the exact (lower panels)
Hamiltonian when considering a limited number of modes.
This comparison also shows that the width dependence is
only reproduced qualitatively in the linear approximation
for small and intermediate W and that the oscillating be-
havior at small W is due to non-linear terms.

3.4 Spin polarization

Here, we study the spin polarization, that is, the expec-
tation value of the x-component of the spin operator for
different subbands

Pn(qy) = [〈Sx =
1

2
sx ⊗ σ0〉]n , (29)

as a function of the momentum along the GNR axis qy
with the tight binding method. In absence of RSOI and
external magnetic fields, the spectrum of the GNR is com-
posed of several sub bands that are two-fold degenerate
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with opposite spin polarisation. The latter quantity does
not depend on the subband index and is constant for all
the values of the momentum qy. However, the mixing of
the subbands induced by the RSOI modifies the physical
picture completely.

In Figs. 8 (a) and (c) we show the results for two differ-
ent values of RSOI, λ ∼ 0.01t and λ ∼ 0.1t, respectively.
Similar to the observations for quantum wires in presence
of RSOI, [29,30] the spin polarization shows a smooth
change to the opposite sign when qy goes from positive
to negative values. For the lowest energy band (n = 0),
shown in red, the crossover is due to a crossing with a
band of the next higher mode (n = 1), which is lifted
by the terms coupling different modes in HSO. The black
and gray bands have the same mode index n = ±1, but
still they show a smooth crossover from positive to nega-
tive spin polarization, which cannot be directly attributed
to a certain avoided band crossing. Indeed, in the case of
quantum wires with RSOI [29,30] it is possible to split the
system Hamiltonian in a part with RSOI along the wire di-
rection and another one perpendicular to the first. In this
respect, it is possible to interpret the effects of spin polar-
ization as a function of the mode coupling due to the sec-
ond term. This separation of the Hamiltonian in different
subparts is not possible in the case of a Dirac-like Hamil-
tonian. However, in analogy to the case of quantum wires,
we observe that the spin polarization curves do not have a
well defined spin quantization axis. For smaller λ the situ-
ation is different as then the influence of the higher mode
bands is negligible, since the modes are energetically far
apart for ribbons that are narrow enough (c.f. Fig. 8(a)).
The crossing point of the conduction and the valence band
does not influence the spin polarization. The plots show a
clear polarization around qy = 0 of either +1/2 or −1/2
until the first anti-crossing with a higher mode band.

4 Summary and discussion

We have studied graphene nanoribbons with armchair bound-
aries and finite Rashba spin-orbit interaction. The solution
of the stationary Schrödinger equation requires the choice
of a basis set which fulfills the boundary conditions set by
the ribbon geometry. Therefore the momentum represen-
tation of the Hamiltonian is obtained from the real-space
tight binding Hamiltonian via a sine transform instead
of the (commonly used) Fourier transform. We emphasize
that this procedure is quite different from the case of a
graphene armchair nanoribbon without RSOI [27]. There
the standard approach is to take a basis set consisting of
plane waves, which is obtained via a Fourier transform of
the bulk problem and to apply the boundary conditions a
posteriori by taking linear combinations of wave function
components belonging to the two different K/K ′ points,
cf. equation (11). But the latter basis cannot be used to
diagonalize the RSOI part of the Dirac Hamiltonian (5).
Due to the derivative operators contained in the expansion
up to 1st order in the momentum of the RSOI Hamilto-
nian [28], the use of this standard basis is inconsistent and
leads to non-Hermitian matrices. On the other hand, the
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Fig. 8. (color online) Spin polarization derived from the tight
binding approach for (a) λ = 0.01t and (c) λ = 0.1t and a
width of W = 12a. In order to compare the energy bands with
the spin polarization, panels (b) and (d) show the spectra for
the two cases in the same color code: The bands and their
polarization are shown in red for n = 0 and in black and gray
for n = ±1.

boundary conditions are naturally satisfied when using the
sine transform.

We have derived the RSOI Hamiltonian in momen-
tum space which allows to study the effects of finite RSOI
on the energy spectrum in a mode dependent manner.
Further analytical approximations were presented for the
lowest bands and the case of small RSOI and we have in-
vestigated the intra and inter mode coupling induced by
RSOI. We have analyzed the spectra for a variety of ribbon
widths and RSOI strengths For large RSOI the spectrum
is strongly influenced by the width of the ribbon, while
for small RSOI this is not the case. Apart from the overall
lifting of spin degeneracy, the presence of RSOI leads to
the opening of a gap and a shifting of the band minimum.
Eventually, sufficiently large RSOI leads to the appear-
ance of an additional Dirac point. In addition, RSOI also
has a significant effect on the spin polarization perpendic-
ular to the ribbon axis, which depends on the value of the
momentum along the ribbon axis. This effect is due to the
mixing of different subbands due to RSOI. The knowl-
edge of these properties can be useful for the design of
spintronics devices based on graphene nanoribbons.
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