29 research outputs found

    Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Get PDF
    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur

    Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia)

    Get PDF
    Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotianatabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP+ to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI–MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP+ as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro

    Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

    Get PDF
    Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production

    Stacking resistance to crown gall and nematodes in walnut rootstocks

    Get PDF
    Abstract Background Crown gall (CG) (Agrobacterium tumefaciens) and the root lesion nematodes (RLNs) (Pratylenchus vulnus) are major challenges faced by the California walnut industry, reducing productivity and increasing the cost of establishing and maintaining orchards. Current nematode control strategies include nematicides, crop rotation, and tolerant cultivars, but these methods have limits. Developing genetic resistance through novel approaches like RNA interference (RNAi) can address these problems. RNAi-mediated silencing of CG disease in walnut (Juglans regia L.) has been achieved previously. We sought to place both CG and nematode resistance into a single walnut rootstock genotype using co-transformation to stack the resistance genes. A. tumefaciens, carrying self-complimentary iaaM and ipt transgenes, and Agrobacterium rhizogenes, carrying a self-complimentary Pv010 gene from P. vulnus, were used as co-transformation vectors. RolABC genes were introduced by the resident T-DNA in the A. rhizogenes Ri-plasmid used as a vector for plant transformation. Pv010 and Pv194 (transgenic control) genes were also transferred separately using A. tumefaciens. To test for resistance, transformed walnut roots were challenged with P. vulnus and microshoots were challenged with a virulent strain of A. tumefaciens. Results Combining the two bacterial strains at a 1:1 rather than 1:3 ratio increased the co-transformation efficiency. Although complete immunity to nematode infection was not observed, transgenic lines yielded up to 79% fewer nematodes per root following in vitro co-culture than untransformed controls. Transgenic line 33-3-1 exhibited complete crown gall control and 32% fewer nematodes. The transgenic plants had thicker, longer roots than untransformed controls possibly due to insertion of rolABC genes. When the Pv010 gene was present in roots with or without rolABC genes there was partial or complete control of RLNs. Transformation using only one vector showed 100% control in some lines. Conclusions CG and nematode resistance gene stacking controlled CG and RLNs simultaneously in walnuts. Silencing genes encoding iaaM, ipt, and Pv010 decrease CG formation and RLNs populations in walnut. Beneficial plant genotype and phenotype changes are caused by co-transformation using A. tumefaciens and A. rhizogenes strains. Viable resistance against root lesion nematodes in walnut plants may be accomplished in the future using this gene stacking technology

    The Chemical Chaperone Proline Relieves the Thermosensitivity of a dnaK Deletion Mutant at 42°C

    No full text
    Since, like other osmolytes, proline can act as a protein stabilizer, we investigated the thermoprotectant properties of proline in vitro and in vivo. In vivo, elevated proline pools in Escherichia coli (obtained by altering the feedback inhibition by proline of γ-glutamylkinase, the first enzyme of the proline biosynthesis pathway) restore the viability of a dnaK-deficient mutant at 42°C, suggesting that proline can act as a thermoprotectant for E. coli cells. Furthermore, analysis of aggregated proteins in the dnaK-deficient strain at 42°C by two-dimensional gel electrophoresis shows that high proline pools reduce the protein aggregation defect of the dnaK-deficient strain. In vitro, like other “chemical chaperones,” and like the DnaK chaperone, proline protects citrate synthase against thermodenaturation and stimulates citrate synthase renaturation after urea denaturation. These results show that a protein aggregation defect can be compensated for by a single mutation in an amino acid biosynthetic pathway and that an ubiquitously producible chemical chaperone can compensate for a defect in one of the major chaperones involved in protein folding and aggregation

    Differentially regulated<sup>*</sup> pathways in response to HLB disease.

    No full text
    *<p>Based on genes with log fold ratio <−1.5 and >1.5 between AH and SY samples; <i>p</i>-values are shown for GSEA using Pathexpress web tool, with <i>p</i><0.1 considered to be significantly HLB-regulated; n.s.  =  not significant.</p
    corecore