12 research outputs found

    Design of FNN AVR for Enhancement of Power System Stability Using Matlab/Simulink

    Get PDF
    A simple technique of excitation voltage control with NNAVR (Neural Network Automatic Voltage Regulator) is proposed in this paper. Popular type of ANN (Artificial Neural Networks) known as RBF (Radial Basis Function) architectures with OLS (Orthogonal Least Square) algorithm is suggested to design AVR in order to prove its applicability and suitability. This proposed technique is implemented considering as SMIB (Single Machine Connected to Infinite Bus) system with linearized model of synchronous machine and its excitation system using Matlab/Simulink. The simulation results of RBF AVR, when compared with conventional AVR controllers show better performance, improve the transient and small signal stability of the system and above all its response is more suitable in case of load changing conditions

    Wavelet Transform and ANNs for Detection and Classification of Power Signal Disturbances

    No full text
    This article proposes WT (Wavelet Transform) and an ANN (Artificial Neural Network) based approach for detection and classification of EPQDs (Electrical Power Quality Disturbances). A modified WT known as ST (Stockwell Transform) is suggested for feature extraction and PNN (Probabilistic Neural Network) for pattern classification. The ST possesses outstanding time-frequency resolution characteristics and its phase correction techniques determine the phase of the WT to the zero time point. The feature vectors for the input of PNN are extracted using ST technique and these obtained features are discrete, logical, and unaffected to noisy data of distorted signals. The data of the models required to develop the distorted EPQ (Electrical Power Quality) signals, is obtained within the ranges specified by IEEE 1159-1995 in its literatures. The features vectors including noisy time varying data during steady state or transient condition and extracted using the ST, are trained through PNN for pattern classification. Their simulation results demonstrate that the proposed methodology is successful and can classify EPQD

    Design of Three-Phase Hybrid Active Power Filter for Compensating the Harmonic Currents of Three-Phase System

    No full text
    Power quality standards (IEEE-519) require to limit the total harmonic distortion within satisfactory range caused by power electronic based devices. Our work deals with the design of hybrid active filter to reduce current perturbations produced by power electronics based devices. The Instantaneous Active and Reactive Power Method (pq) is used to perform the identification of disturbing currents. The pq algorithm creates a reference current, whereas, this reference current is tracked by the current of the voltage source converter. The currents of the voltage source converter are controlled by hysteresis controller. Simulation results showed that the hybrid active filter can compensate the harmonic currents effectively and improve power quality

    A Review of Energy and Power Planning and Policies of Pakistan

    Get PDF
    Pakistan is facing multiple challenges for harnessing the indigenous energy resources and devise rational energy policies. The country is believed to have abundant energy resources, however, coping substantial electricity supply gap of over 5000 MW. This paper analyses country’s energy and power planning studies conducted since its independence in 1947 and policies announced so far. It is found that water resources management attained more emphasis in early decades of post-independence rather than energy concerns. The first energy and power planning study was conducted in late 1960s and since then various studies were undertaken to supplement five yearly medium term development plans of government. However, it is pertinent to mention that formal energy and power policies were only announced from 1994 onwards owing to growing electricity demand and progressing industrialization. Beside this, the focus of these policies is not only varied but were conceived without undertaking integrated energy planning using energy modeling tools e.g. MARKAL/TIMES; LEAP, ENPEP BALANCE, MESSAGE and EnergyPLAN. It is despite the fact that these tools are successfully applied globally for devising the energy policies and address the complexities of energy system by assisting effective policy formulation. This study recommends that integrated energy planning using energy modeling tools will be helpful to develop sustainable energy policies in Pakistan to eradicate electricity crises

    Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review

    No full text
    Despite being a limited and scarce resource, the necessity and exploitation of fossil fuels are unstoppable in serving human demands. In order to supply energy demand without causing environmental damage, it is crucial to utilize a variety of renewable feedstock resources. Biochar, made up mostly of carbon, oxygen, and hydrogen, is the product of the thermochemical processes of pyrolysis, hydrothermal carbonization, torrefaction, and hydrothermal liquefaction. Biochar, once activated, has the potential to act as a catalyst in a variety of energy generation processes, including transesterification and fermentation. Transesterification is the process that is used to produce biodiesel from a variety of oils, both edible and non-edible, as well as animal fats in the presence of either a homogeneous or a heterogeneous catalyst. When selecting a catalyst, the amount of free fatty acid (FFA) content in the oil is considered. Homogeneous catalysts are superior to heterogeneous catalysts because they are unaffected by the concentration of free fatty acids in the oil. Homogeneous catalysts are extremely hazardous, as they are poisonous, combustible, and corrosive. In addition, the production of soaps as a byproduct and a large volume of wastewater from the use of homogeneous catalysts necessitates additional pretreatment procedures and costs for adequate disposal. This article examines the biochar-based fuel-generation catalyst in detail. At first, a wide variety of thermochemical methods were provided for manufacturing biochar and its production. Biochar’s chemical nature was analyzed, and the case for using it as a catalyst in the production of biofuels was also scrutinized. An explanation of how the biochar catalyst can improve fuel synthesis is provided for readers. Biodiesel’s transesterification and esterification processes, biomass hydrolysis, and biohydrogen generation with the help of a biochar catalyst are all reviewed in detail

    Cost Estimation and Comparison of Carbon Capture and Storage Technology with Wind Energy

    No full text
    The CCS (Carbon Capture and Storage) is one of the significant solutions to reduce CO2 emissions from fossil fuelled electricity generation plants and minimize the effect of global warming. Economic analysis of CCS technology is, therefore, essential for the feasibility appraisal towards CO2 reduction. In this paper LCOE (Levelized Cost of Electricity Generation) has been estimated with and without CCS technology for fossil fuel based power plants of Pakistan and also further compared with computed LCOE of WE (Wind Energy) based power plants of the Pakistan. The results of this study suggest that the electricity generation costs of the fossil fuel power plants increase more than 44% with CCS technology as compared to without CCS technology. The generation costs are also found to be 10% further on higher side when considering efficiency penalty owing to installation of CCS technology. In addition, the CO2 avoided costs from natural gas plant are found to be 40 and 10% higher than the local coal and imported coal plants respectively. As such, the electricity generation cost of 5.09 Rs/kWh from WE plants is found to be competitive even when fossil fuel based plants are without CCS technology, with lowest cost of 5.9 Rs./kWh of CCNG (Combined Cycle Natural Gas) plant. Based on analysis of results of this study and anticipated future development of efficient and cheap WE technologies, it is concluded that WE based electricity generation would be most appropriate option for CO2 reduction for Pakistan

    Modeling of Future Electricity Generation and Emissions Assessment for Pakistan

    No full text
    Electricity demand in Pakistan has consistently increased in the past two decades. However, this demand is so far partially met due to insufficient supply, inefficient power plants, high transmission and distribution system losses, lack of effective planning efforts and due coordination. The existing electricity generation also largely depends on the imported fossil fuels, which is a huge burden on the national economy alongside causing colossal loss to the environment. It is also evident from existing government plans that electricity generation from low-cost coal fuels in the near future will further increase the emissions. As such, in this study, following the government’s electricity demand forecast, four supply side scenarios for the study period (2013–2035) have been developed using Long-range Energy Alternatives Planning System (LEAP) software tool. These scenarios are Reference scenario (REF) based on the government’s power expansion plans, and three alternative scenarios, which include, More Renewable (MRR), More Hydro (MRH), and More Hydro Nuclear (MRHN). Furthermore, the associated gaseous emissions (CO2, SO2, NOX, CH4, N2O) are projected under each of these scenarios. The results of this study reveal that the alternative scenarios are more environmentally friendly than the REF scenario where penetration of planned coal-based power generation plants would be the major sources of emissions. It is, therefore, recommended that the government, apart from implementing the existing plans, should consider harnessing the renewable energy sources as indispensable energy sources in the future energy mix for electricity generation to reduce the fossil-fuel import bill and to contain the emissions

    Solar photovoltaic potential and diffusion assessment for Pakistan

    No full text
    Abstract In Pakistan, around 58% of current electricity is generated from fossil fuels and only 2.4% is generated using renewable energy (RE) resources even though country is blessed with enormous RE potential. Among other RE resources, Pakistan's geographical location offers high solar energy potential, which implies that actual potential assessment should be undertaken. This study, as such, undertakes a comprehensive assessment of solar energy potential and prospects of solar photovoltaic (PV) systems for both off‐grid and grid‐connected systems. This study also estimates the future available capacity of rooftop and rural off‐grid solar PV capacity. Three different types of solar PV modules of the same size, that is, thin‐film, premium, and standard were modeled to compare energy outputs. NREL's System Advisor Model (SAM) is used to estimate the geographical and technical potential of solar PV considering updated data and geographical information. SAM results suggest that an average of 4.5 kWh/kWp/day is obtained from an installed capacity of 1 KWp. The logistic modeling equations are further used to forecast the solar PV penetration over a period until 2090. The research investigation concludes that 2.8 × 106 GWh of electricity can be generated annually in Pakistan. The estimated results prove that solar PV has the potential to meet the present as well as future energy needs of Pakistan

    Multi-criteria analysis of electricity generation scenarios for sustainable energy planning in Pakistan

    Get PDF
    The now over a decade-long electricity crisis in Pakistan has adversely affected the socio-economic development of the country. This situation is mainly due to a lack of sustainable energy planning and policy formulation. In this context, energy models can be of great help but only a handful of such efforts have been undertaken in Pakistan. Two key shortcomings pertaining to energy models lead to their low utilization in developing countries. First, the models do not effectively make decisions, but rather provide a set of alternatives based on modeling parameters; and secondly, the complexity of these models is often poorly understood by the decision makers. As such, in this study, the Analytical Hierarchy Process (AHP) methodology of Multi-Criteria Decision-Making (MCDM) has been used for the sustainability assessment of energy modeling results for long-term electricity planning. The four scenario alternatives developed in the energy modeling effort, Reference (REF), Renewable Energy Technologies (RET), Clean Coal Maximum (CCM) and Energy Efficiency and Conservation (EEC), have been ranked using the Expert Choice® tool based on the AHP methodology. The AHP decision support framework of this study revealed the EEC scenario as the most favorable electricity generation scenario followed by the REF, RET and CCM scenarios. Besides that, this study proposes policy recommendations to undertake integrated energy modeling and decision analysis for sustainable energy planning in Pakistan
    corecore