245 research outputs found
The relationship between P2X4 and P2X7: a physiologically important interaction?
Purinergic signaling within the kidney is becoming an important focus in the study of renal health and disease. The effectors of ATP signaling, the P2Y and P2X receptors, are expressed to varying extents in and along the nephron. There are many studies demonstrating the importance of the P2Y2 receptor on kidney function, and other P2 receptors are now emerging as participants in renal regulation. The P2X4 receptor has been linked to epithelial sodium transport in the nephron and expression levels of the P2X7 receptor are up-regulated in certain pathophysiological states. P2X7 antagonism has been shown to ameliorate rodent models of DOCA salt-induced hypertension and P2X4 null mice are hypertensive. Interestingly, polymorphisms in the genetic loci of P2X4 and P2X7 have been linked to blood pressure variation in human studies. In addition to the increasing evidence linking these two P2X receptors to renal function and health, a number of studies link the two receptors in terms of physical associations between their subunits, demonstrated both in vitro and in vivo. This review will analyze the current literature regarding interactions between P2X4 and P2X7 and assess the potential impact of these with respect to renal function
Purinergic Signaling in Kidney Disease
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP- activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP and UDP or adenosine, respectively. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleoti des. These enzymes integrate this multi-receptor purinergic-signaling complex by determining the nucleotide milieu, as well as titrating receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease
Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis
Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Familial distal renal tubular acidosis (dRTA) and Southeast Asian ovalocytosis (SAO) may coexist in the same patient. Both can originate in mutations of the anion-exchanger 1 gene (AE1), which codes for band 3, the bicarbonate/chloride exchanger in both the red cell membrane and the basolateral membrane of the collecting tubule alpha-intercalated cell. Dominant dRTA is usually due to a mutation of the AE1 gene, which does not alter red cell morphology. SAO is caused by an AE1 mutation that leads to a nine amino acid deletion of red cell band 3, but by itself does not cause dRTA. Recent gene studies have shown that AE1 mutations are responsible for autosomal recessive dRTA in several countries in Southeast Asia; these patients may be homozygous for the mutation or be compound heterozygotes of two different AE1 mutations, one of which is usually the SAO mutation
ETA receptor-mediated Ca2+ signaling in thin descending limbs of Henle's loop: Impairment in genetic hypertension
ETA-mediated Ca2+ signaling in thin descending limbs of Henle's loop: Impairment in genetic hypertension.BackgroundEndothelins (ET) have diuretic and natriuretic actions via ETB receptors that are found in most renal tubular segments, although the thin limbs have not been studied. Data also suggest that dysfunction of the renal ET system may be important in the pathogenesis of hypertension. The present study was aimed at determining the presence and nature of ET receptors in the thin limbs of Henle's loop and their ability to activate a Ca2+-dependent signaling pathway, as well as whether ET-induced Ca2+ signals are altered in hypertension.MethodsReverse transcription-polymerase chain reaction (RT-PCR) and Fura 2 fluorescence measurements of [Ca2+]i were made to characterize ET receptors in descending thin limbs (DTL) of Sprague-Dawley rats, spontaneously hypertensive (SH) rats, and control Wistar-Kyoto (WKY) rats, and the three selected strains of Lyon rats with low-normal (LL), normal (LN), and high (LH) blood pressure.ResultsIn SD rats, ET induced Ca2+ signals in DTL of long-looped nephrons, but not in DTL of short loops, or in ascending thin limbs. Ca2+ increases were abolished by BQ123, an antagonist of the ETA receptor, but not by BQ788, an antagonist of the ETB subtype. Endothelin-3 and sarafotoxin 6c, two ETB receptor agonists, were both inactive. RT-PCR showed the presence of both ETA and ETB receptor mRNA. Ca2+ signals measured in DTL of WKY LL and LN rats were similar to those in Sprague-Dawley rats, but were significantly diminished (LH) or abolished (SH) in hypertensive rats.ConclusionA functional ETA receptor activating a Ca2+-dependent pathway is expressed in DTL. This ETA-induced calcium signaling is impaired in two strains of genetically hypertensive rats
Exaggerated renal fibrosis in P2X4 receptor-deficient mice following unilateral ureteric obstruction
Background The ATP-sensitive P2X7 receptor (P2X7R) has been shown to contribute to renal injury in nephrotoxic nephritis, a rodent model of acute glomerulonephritis, and in unilateral ureteric obstruction (UUO), a rodent model of chronic interstitial inflammation and fibrosis. Renal tubular cells, endothelial cells and macrophages also express the closely related P2X4 receptor (P2X4R), which is chromosomally co-located with P2X7R and has 40% homology; it is also pro-inflammatory and has been shown to interact with P2X7R to modulate its pro-apoptotic and pro-inflammatory effects. Therefore, we chose to explore the function of P2X4R in the UUO model of renal injury using knockout mice. We hypothesized that UUO-induced tubulointerstitial damage and fibrosis would also be attenuated in P2X4R−/− mice. Method P2X4R−/− and wild-type (WT) mice were subjected to either UUO or sham operation. Kidney samples taken on Days 7 and 14 were evaluated for renal inflammation and fibrosis, and expression of pro-fibrotic factors. Results To our surprise, the obstructed kidney in P2X4R−/− mice showed more severe renal injury, more collagen deposition (picrosirius red staining, increase of 53%; P < 0.05) and more type I collagen staining (increase of 107%; P < 0.01), as well as increased mRNA for TGF-β (increase of 102%, P < 0.0005) and CTGF (increase of 157%; P < 0.05) by Day 14, compared with the UUO WT mice. Conclusion These findings showed that lack of P2X4R expression leads to increased renal fibrosis, and increased expression of TGF-β and CTGF in the UUO mode
P2X7 receptor‐mediated Nlrp3‐inflammasome activation is a genetic determinant of macrophage‐dependent crescentic glomerulonephritis
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141169/1/jlb0127-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141169/2/jlb0127.pd
Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)
Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
Translational research on cognitive impairment in chronic kidney disease
Cognitive decline is common in patients with acute or chronic kidney disease. Several areas of brain function can be affected, including short and long-term memory, attention and inhibitory control, sleep, mood, eating control and motor function. Cognitive decline in kidney disease shares risk factors with cognitive dysfunction in people without kidney disease, such as diabetes, high blood pressure, sedentary lifestyle and unhealthy diet. However, additional kidney-specific risk factors may contribute, such as uremic toxins, electrolyte imbalances, chronic inflammation, acid-base disorders or endocrine dysregulation. Traditional and kidney-specific risk factors may interact to cause damage to the blood-brain barrier, induce vascular damage in the brain, and cause neurotoxicity or neuroinflammation. Here, we discuss recent insights into the pathomechanisms of cognitive decline from animal models and novel avenues for prevention and therapy. We focus on a several areas that influence cognition: blood-brain barrier disruption, the role of skeletal muscle, physical activity and the endocrine factor irisin, and the emerging therapeutic role of sodium-glucose transporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. Taken together, these studies demonstrate the importance of animal models in providing a mechanistic understanding of this complex condition and their potential to explain the mechanisms of novel therapies.</p
Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways
P2RX7, an ionotropic receptor for extracellular ATP, is expressed on immune cells, including macrophages, monocytes and dendritic cells and is up-regulated on non-immune cells following injury. P2RX7 plays a role in many biological processes, including production of pro-inflammatory cytokines such as IL-1β via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knock-out (KO) inbred rat strain and taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identify a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for production of IL-1β in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1β independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. This article is protected by copyright. All rights reserved
- …