44 research outputs found
Epidemia:An R Package for Semi-Mechanistic Bayesian Modelling of Infectious Diseases using Point Processes
This article introduces epidemia, an R package for Bayesian,
regression-oriented modeling of infectious diseases. The implemented models
define a likelihood for all observed data while also explicitly modeling
transmission dynamics: an approach often termed as semi-mechanistic. Infections
are propagated over time using renewal equations. This approach is inspired by
self-exciting, continuous-time point processes such as the Hawkes process. A
variety of inferential tasks can be performed using the package. Key
epidemiological quantities, including reproduction numbers and latent
infections, may be estimated within the framework. The models may be used to
evaluate the determinants of changes in transmission rates, including the
effects of control measures. Epidemic dynamics may be simulated either from a
fitted model or a prior model; allowing for prior/posterior predictive checks,
experimentation, and forecasting
On the derivation of the renewal equation from an age-dependent branching process: an epidemic modelling perspective
Renewal processes are a popular approach used in modelling infectious disease
outbreaks. In a renewal process, previous infections give rise to future
infections. However, while this formulation seems sensible, its application to
infectious disease can be difficult to justify from first principles. It has
been shown from the seminal work of Bellman and Harris that the renewal
equation arises as the expectation of an age-dependent branching process. In
this paper we provide a detailed derivation of the original Bellman Harris
process. We introduce generalisations, that allow for time-varying reproduction
numbers and the accounting of exogenous events, such as importations. We show
how inference on the renewal equation is easy to accomplish within a Bayesian
hierarchical framework. Using off the shelf MCMC packages, we fit to South
Korea COVID-19 case data to estimate reproduction numbers and importations. Our
derivation provides the mathematical fundamentals and assumptions underpinning
the use of the renewal equation for modelling outbreaks
Temperature and population density influence SARS-CoV-2 transmission in the absence of nonpharmaceutical interventions
As COVID-19 continues to spread across the world, it is increasingly important to understand the factors that influence its transmission. Seasonal variation driven by responses to changing environment has been shown to affect the transmission intensity of several coronaviruses. However, the impact of the environment on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains largely unknown, and thus seasonal variation remains a source of uncertainty in forecasts of SARS-CoV-2 transmission. Here we address this issue by assessing the association of temperature, humidity, ultraviolet radiation, and population density with estimates of transmission rate (R). Using data from the United States, we explore correlates of transmission across US states using comparative regression and integrative epidemiological modeling. We find that policy intervention ("lockdown") and reductions in individuals' mobility are the major predictors of SARS-CoV-2 transmission rates, but, in their absence, lower temperatures and higher population densities are correlated with increased SARS-CoV-2 transmission. Our results show that summer weather cannot be considered a substitute for mitigation policies, but that lower autumn and winter temperatures may lead to an increase in transmission intensity in the absence of policy interventions or behavioral changes. We outline how this information may improve the forecasting of COVID-19, reveal its future seasonal dynamics, and inform intervention policies
Evaluating the performance of malaria genomics for inferring changes in transmission intensity using transmission modelling
AbstractAdvances in genetic sequencing and accompanying methodological approaches have resulted in pathogen genetics being used in the control of infectious diseases. To utilise these methodologies for malaria we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment. Here we develop an individual-based transmission model to simulate malaria parasite genetics parameterised using estimated relationships between complexity of infection and age from 5 regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterise the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The best performing model successfully predicted malaria prevalence with mean absolute error of 0.055, suggesting genetic tools could be used for monitoring the impact of malaria interventions.</jats:p
Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in European countries: technical description update
Following the emergence of a novel coronavirus (SARS-CoV-2) and its spread
outside of China, Europe has experienced large epidemics. In response, many
European countries have implemented unprecedented non-pharmaceutical
interventions including case isolation, the closure of schools and
universities, banning of mass gatherings and/or public events, and most
recently, wide-scale social distancing including local and national lockdowns.
In this technical update, we extend a semi-mechanistic Bayesian hierarchical
model that infers the impact of these interventions and estimates the number of
infections over time. Our methods assume that changes in the reproductive
number - a measure of transmission - are an immediate response to these
interventions being implemented rather than broader gradual changes in
behaviour. Our model estimates these changes by calculating backwards from
temporal data on observed to estimate the number of infections and rate of
transmission that occurred several weeks prior, allowing for a probabilistic
time lag between infection and death.
In this update we extend our original model [Flaxman, Mishra, Gandy et al
2020, Report #13, Imperial College London] to include (a) population saturation
effects, (b) prior uncertainty on the infection fatality ratio, (c) a more
balanced prior on intervention effects and (d) partial pooling of the lockdown
intervention covariate. We also (e) included another 3 countries (Greece, the
Netherlands and Portugal).
The model code is available at
https://github.com/ImperialCollegeLondon/covid19model/
We are now reporting the results of our updated model online at
https://mrc-ide.github.io/covid19estimates/
We estimated parameters jointly for all M=14 countries in a single
hierarchical model. Inference is performed in the probabilistic programming
language Stan using an adaptive Hamiltonian Monte Carlo (HMC) sampler
Age groups that sustain resurging COVID-19 epidemics in the United States
After initial declines, in mid-2020 a resurgence in transmission of novel coronavirus disease (COVID-19) occurred in the United States and Europe. As efforts to control COVID-19 disease are reintensified, understanding the age demographics driving transmission and how these affect the loosening of interventions is crucial. We analyze aggregated, age-specific mobility trends from more than 10 million individuals in the United States and link these mechanistically to age-specific COVID-19 mortality data. We estimate that as of October 2020, individuals aged 20 to 49 are the only age groups sustaining resurgent SARS-CoV-2 transmission with reproduction numbers well above one and that at least 65 of 100 COVID-19 infections originate from individuals aged 20 to 49 in the United States. Targeting interventions-including transmission-blocking vaccines-to adults aged 20 to 49 is an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths
Evaluating the Performance of Malaria Genetics for Inferring Changes in Transmission Intensity Using Transmission Modeling.
Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance
Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England.
BACKGROUND: Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 (WHO label Alpha) rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital. METHODS: We examine trends in the prevalence of non-B.1.1.7 lineages in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. The study period spans from 31st January 2021 to 15th May 2021. FINDINGS: Across data sources, the percentage of non-B.1.1.7 variants has been increasing since late March 2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, B.1.617.2 (WHO label Delta) spread rapidly, becoming the dominant variant in England by late May. INTERPRETATION: The outcome of competition between variants depends on a wide range of factors such as intrinsic transmissibility, evasion of prior immunity, demographic specificities and interactions with non-pharmaceutical interventions. The presence and rise of non-B.1.1.7 variants in March likely was driven by importations and some community transmission. There was competition between non-B.1.17 variants which resulted in B.1.617.2 becoming dominant in April and May with considerable community transmission. Our results underscore that early detection of new variants requires a diverse array of data sources in community surveillance. Continued real-time information on the highly dynamic composition and trajectory of different SARS-CoV-2 lineages is essential to future control efforts. FUNDING: National Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy, Academy of Medical Sciences Bill,Melinda Gates Foundation, Imperial College Healthcare NHS Trust, The Novo Nordisk Foundation, MRC Centre for Global Infectious Disease Analysis, Community Jameel, Cancer Research UK, Imperial College COVID-19 Research Fund, Medical Research Council, Wellcome Sanger Institute.National Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy, Academy of Medical Sciences Bill,Melinda Gates Foundation, Imperial College Healthcare NHS Trust, The Novo Nordisk Foundation, MRC Centre for Global Infectious Disease Analysis, Community Jameel, Cancer Research UK, Imperial College COVID-19 Research Fund, Medical Research Council, Wellcome Sanger Institute