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INTRODUCTION: After initial declines, in mid-
2020, a sustained resurgence in the transmis-
sion of novel coronavirus disease (COVID-19)
occurred in the United States. Throughout
the US epidemic, considerable heterogeneity
existed among states, both in terms of overall
mortality and infection, but also in the types
and stringency of nonpharmaceutical inter-
ventions.Despite these stark differences among
states, little is known about the relationship be-
tween interventions, contact patterns, and infec-
tions, or how this varies by age anddemographics.
A useful tool for studying these dynamics is in-
dividual, age-specificmobility data. In this study,
we use detailed mobile-phone data from more
than 10million individuals and establish amech-
anistic relationship between individual contact
patterns and COVID-19 mortality data.

RATIONALE: As the pandemic progresses, dis-
ease control responses are becoming increas-
ingly nuanced and targeted. Understanding
fine-scale patterns of how individuals interact
with each other is essential to mounting an
efficient public health control program. For
example, the choice of closing workplaces,
closing schools, limiting hospitality sectors,
or prioritizing vaccination to certain popu-

lation groups should be informed by the
demographics currently driving and sustaining
transmission. To develop the tools to answer
such questions, we introduce a new framework
that links mobility to mortality through age-
specific contact patterns and then use this rich
relationship to reconstruct accurate transmis-
sion dynamics (see figure panel A).

RESULTS: We find that as of 29 October 2020,
adults aged 20 to 34 and 35 to 49 are the
only age groups that have sustained SARS-
CoV-2 transmission with reproduction num-
bers (transmission rates) consistently above
one. The high reproduction numbers from
adults are linked both to rebounding mobil-
ity over the summer and elevated transmis-
sion risks per venue visit among adults aged
20 to 49. Before school reopening, we estimate
that 75 of 100 COVID-19 infections originated
from adults aged 20 to 49, and the share of
young adults aged 20 to 34 among COVID-19
infections was highly variable geographically.
After school reopening, we reconstruct rela-
tively modest shifts in the age-specific sources
of resurgent COVID-19 toward younger in-
dividuals, with less than 5% of SARS-CoV-2
transmissions attributable to children aged

0 to 9 and less than 10% attributable to early
adolescents and teenagers aged 10 to 19. Thus,
adults aged 20 to 49 continue to be the only
age groups that contribute disproportionately
to COVID-19 spread relative to their size in the
population (see figure panel B). However, be-
cause children and teenagers seed infections
among adults who are more transmission ef-
ficient, we estimate that overall, school opening
is indirectly associated with a 26% increase in
SARS-CoV-2 transmission.

CONCLUSION:We show that considering trans-
mission through the lens of contact patterns is
fundamental to understanding which popula-
tion groups are driving disease transmission.
Over time, the share of age groups among
reported deaths has been markedly constant,
and the data provide no evidence that trans-
mission shifted to younger age groups before
school reopening, and no evidence that young
adults aged 20 to 34 were the primary source
of resurgent epidemics since the summer of
2020. Our key conclusion is that in locations
where novel, highly transmissible SARS-CoV-2
lineages have not yet become established,
additional interventions among adults aged
20 to 49, such as mass vaccination with
transmission-blocking vaccines, could bring
resurgent COVID-19 epidemics under control
and avert deaths.▪
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After initial declines, in mid-2020 a resurgence in transmission of novel coronavirus disease (COVID-19)
occurred in the United States and Europe. As efforts to control COVID-19 disease are reintensified,
understanding the age demographics driving transmission and how these affect the loosening of
interventions is crucial. We analyze aggregated, age-specific mobility trends from more than 10 million
individuals in the United States and link these mechanistically to age-specific COVID-19 mortality data.
We estimate that as of October 2020, individuals aged 20 to 49 are the only age groups sustaining
resurgent SARS-CoV-2 transmission with reproduction numbers well above one and that at least 65 of
100 COVID-19 infections originate from individuals aged 20 to 49 in the United States. Targeting
interventions—including transmission-blocking vaccines—to adults aged 20 to 49 is an important
consideration in halting resurgent epidemics and preventing COVID-19–attributable deaths.

F
ollowing worldwide spread of the novel
severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), the implemen-
tation of large-scale nonpharmaceutical
interventions has led to sustained declines

in the number of reported SARS-CoV-2 infec-
tions and deaths from COVID-19 (1, 2). How-
ever, since mid-June 2020, the daily number
of reported COVID-19 cases has been resurg-
ing in Europe and North America and in the
United States (US) alone surpassed 40,000daily
reported cases on 26 June and 100,000 on
4 November 2020 (3). Demographic analyses
have shown that the share of individuals aged
20 to 29 among reported cases increasedmost,
suggesting that young adults may be driving
resurging epidemics (4). However, reported
COVID-19 case data may not be a reliable in-
dicator of disease spread owing to the large
proportion of asymptomatic COVID-19, in-
creased testing, and changing testing behav-
ior (5). Here, we use detailed, longitudinal, and
age-specific population mobility and COVID-19
mortality data to estimate how nonpharma-

ceutical interventions, changing contact in-
tensities, age, and other factors have inter-
acted and led to resurgent disease spread.
We test previous claims that resurgent COVID-
19 is a result of increased spread from young
adults, identify the population age groups
driving SARS-CoV-2 spread across the US
through 29 October 2020, and quantify changes
in transmission dynamics since schools
reopened.
Similar to many other respiratory diseases,

the spread of SARS-CoV-2 occurs primarily
through close human contact, which, at a pop-
ulation level, is highly structured (6). Prior to
the implementation of COVID-19 interven-
tions, contacts concentrated among individuals
of similar age, were highest among school-
aged children and teens, and were also com-
mon between children and teens and their
parents and between middle-aged adults and
the elderly (6). Since the beginning of the pan-
demic, these contact patterns have changed
substantially (7–9). In the US, the Berkeley
Interpersonal Contact Study indicates that
in late March 2020, after stay-at-home orders
were issued, the average number of daily con-
tacts made by a single individual, also known
as contact intensity, dropped to four or fewer
contacts per day (9). Data from China show
that infants and school-aged children and teens
had almost no contact to similarly aged child-
ren and teens in the first weeks after stay-at-
home orders and reduced contact intensities
with older individuals (7). However, detailed
human contact and mobility data have re-
mained scarce, especially longitudinally, al-

though such data are essential to better
understand the engines of COVID-19 trans-
mission (10).

Cell-phone data suggest similar rebounds in
mobility across age groups

We compiled a national-level, aggregate mo-
bility data set using cell phone data from
>10 million individuals with Foursquare’s
location technology, Pilgrim (11), which lever-
ages a wide variety of mobile device signals
to pinpoint the time, duration, and location
of user visits to locations such as shops, parks,
or universities. Unlike the population-level
mobility trends published by Google from
cell phone geolocation data (12), the data are
disaggregated by age. User venue visits were
aggregated and projected to estimate, for each
state, and two metropolitan areas, daily per-
centage changes in venue visits for individuals
aged 18 to 24, 25 to 34, 35 to 44, 45 to 54, 55
to 64, and 65+ years relative to the baseline
period 3 to 9 February 2020 (figs. S1 and S2
and supplementary materials).
Across the US as a whole, the mobility

trends indicate substantial initial declines in
venue visits, followed by a subsequent re-
bound for all age groups (Fig. 1A and fig. S1).
During the initial phase of epidemic spread,
trends declined most strongly among indi-
viduals aged 18 to 24 years across almost all
states and metropolitan areas and subse-
quently tended to increase most strongly
among individuals aged 18 to 24 in themajority
of states and metropolitan areas (fig. S3), con-
sistent with reopening policies for restaurants,
night clubs, and other venues (10, 13, 14). Yet,
considering both the initial decline and sub-
sequent rebound until 28 October 2020, our
data indicate that mobility levels among indi-
viduals aged <35 years have not increased
above those observed among older individuals
(Fig. 1B and fig. S3).
Mobile-phone signals are challenging to

analyze, owing e.g., to daily fluctuations in
the user panel providing location data, im-
precise geolocationmeasurements, and changing
user behavior (15). We cross-validated the
inferred mobility trends against age-specific
mobility data from a second mobile phone
intelligence provider, Emodo. This second data
set quantified the daily proportions of age-
stratified users who spent time outside their
home location and also showed no evidence
for faster mobility rebounds among young
adults aged <35 years as compared to older
age groups (see supplementary materials).
Although other age-specific behavioral differ-
ences in, for example, consistent social dis-
tancing, mask use, duration of visits, or types of
venues visited could also explain age-specific
differences in transmission risk (10, 13, 14, 16, 17),
these observations nonetheless led us to hypoth-
esize that the resurgent epidemics in the US
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may not be driven by increased transmission
from young adults aged 20 to 34.

Reconstructing human contact patterns and
SARS-CoV-2 transmission

To test this hypothesis and disentangle the
various factors, we incorporated the mobility
data into a Bayesian contact-and-infection
model that describes time-changing contact
and transmission dynamics at state- and metro-
politan area–level across the US. For the time
period prior to changes in mobility trends, we
used data from pre-COVID-19 contact surveys
(6) and each location’s age composition and
population density to predict contact inten-
sities between individuals grouped in 5-year

age bands (figs. S4 to S6), similar to (18). On
weekends, contact intensities between school-
aged children and teens are lower than on
weekdays, whereas intergenerational contact
intensities are higher. In the model, the ob-
served age-specific mobility trends of Fig. 1 are
then used to estimate in each location (state
or metropolitan area) daily changes in age-
specific contact intensities for individuals
aged 20 and above. For younger individuals,
for whom mobility trends are not recorded,
contact intensities during school closure periods
were set to estimates from two contact surveys
conducted after COVID-19 emergence (7, 8).
After school reopening in August 2020, rela-
tive changes in disease-relevant contacts from

and to children and teens aged 0 to 19 were
estimated through the model. Contact inten-
sities between children and teens were
modeled and estimated separately, to account
for potentially lower or higher disease-relevant
contacts between children and teens in the
context of existing nonpharmaceutical inter-
ventions within and outside schools (see ma-
terials and methods). As in (19), the model
further incorporates random effects in space,
in time, and by age to allow for unobserved,
potential age-specific factors that could mod-
ulate disease-relevant contact patterns. These
random effects enabled us to identify sig-
natures of age-specific, behavioral drivers of
SARS-CoV-2 transmission beyond themobility

Monod et al., Science 371, eabe8372 (2021) 26 March 2021 2 of 12

Fig. 1. Mobility trends and
estimated time evolution
of contact intensities
in the United States.
(A) National, longitudinal
mobility trends for
individuals aged 18 to 24,
25 to 34, 35 to 44,
45 to 54, 55 to 64, and
65+, relative to the baseline
period 3 February to
9 February 2020. Projected
per capita visits standardized
daily visit volumes by
the population size in each
location and age group.
The vertical dashed lines
show the dip and rebound
dates since mobility
trends began to decrease
and increase, which
were estimated from the
time-series data. (B) One-
week average of age-specific
mobility trends between
22 October 2020 and
28 October 2020 across the
United States. (C) Inferred
time evolution of contact
intensities in California,
calculated with Eq. 4.
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data in Fig. 1 that may underlie the highly
heterogeneous epidemic trajectories across
the US. Finally, the reconstructed contact
intensities are used in the model to estimate
the rate of SARS-CoV-2 transmission, and
subsequently infections and deaths. The
summary figure provides a model overview,
and full details are in the supplementary
materials.

Estimated disease dynamics closely
reproduce age-specific COVID-19–attributable
death counts

The contact-and-infection model was fitted to
the Foursquare mobility trends and to age-
specific, COVID-19–attributed mortality time-
series data, which we recorded daily from
publicly available sources in 42 US states,
the District of Columbia, and New York City
since 15 March 2020 (fig. S7 and supplemen-
tary materials). Our overall rationale was that,
reflecting the highly structured nature of human
contacts, transmissions from age groups are re-
ceived by specific other age groups, and mor-
tality accrues in the age groups receiving
infections. Thus, working back from the time
evolution of reliably documented, age-specific
COVID-19–attributable deaths, it is possible
to reconstruct age-specific drivers of trans-
mission during particular time periods. Infer-
ence was performed in a Bayesian framework
and restricted to 38 US states, the District of
Columbia, and New York City with at least 300
COVID-19–attributed deaths, giving a total of
8676 observation days. The estimated disease
dynamics closely reproduced the age-specific
COVID-19 death counts (fig. S8).
Figure 2 illustrates the model fits for New

York City, Florida, California, and Arizona,
showing that the inferred epidemic dynamics
differed markedly across locations. For exam-
ple, in New York City, the epidemic accelerated
for at least 4 weeks since the 10th cumulative
death and until age-specific reproduction num-
bers started to decline, resulting in an epidemic
of large magnitude, as shown through the
estimated number of infectious individuals
(Fig. 2, middle column). Subsequently, we
find that reproduction numbers from all age
groupswere controlled towell belowone, except
for individuals aged 20 to 49 (Fig. 2, rightmost
column), resulting in a steady decline of
infectious individuals. In the model, children
and teens returned to their pre-lockdown con-
tact intensities on 24 August 2020 or later,
depending on when state administrations
no longermandated statewide school closures,
and relative decreases or increases in their
disease-relevant contact intensities after school
reopening were estimated. Concomitantly, re-
production numbers from children aged 0 to 9
and teens aged 10 to 19 increased, but as of the
last observation week in October 2020, we find
no strong evidence that their reproduction

numbers have exceeded one at the population
level in most states and metropolitan areas
considered. Detailed situation analyses for
all locations are presented in the supplemen-
tary materials.

SARS-CoV-2 transmission is sustained
primarily from age groups 20 to 49

Figure 3 summarizes the epidemic situation
for all states andmetropolitan areas evaluated
and theagegroups that sustainCOVID-19 spread.
In the last observation week in October 2020,
the estimated reproduction number across
all locations evaluated was highest from in-
dividuals aged 35 to 49 [1.39 (1.34–1.44)]
and 20 to 34 [1.29 (1.24–1.36)], and around one
for age groups 10 to 19 and 50 to 64 (tables S1
and S2). These trends across age groups were
largely consistent over time. The primary
mechanisms underlying the high reproduction
numbers from 20- to 49-year-olds are that at
the population level, adults aged 20 to 49
naturally havemost contacts with other adults
aged 20 and above, who are more susceptible
to COVID-19 than younger individuals, paired
with increasing mobility trends for these
age groups since April 2020 (Fig. 1 and fig.
S6). In addition, from the death time-series
data, themodel inferred characteristic random
effect signatures in time and by age across
locations (fig. S9), which indicate elevated
transmission risk per venue visit for individu-
als aged 20 to 49 relative to other age groups.
Figure S10 visualizes the combined, estimated
effects of mobility and behavior on transmis-
sion risk and reveals, together with Fig. 3,
considerable heterogeneity in age-specific trans-
mission dynamics across locations. Although
the model consistently estimates effective re-
production numbers close to or above one
across all locations from adults aged 35 to
49, disease dynamics are more variable from
young adults aged 20 to 34, with some states
(Arizona, Florida, Texas) showing sustained
transmission from young adults in May and
June, and other states (e.g., Colorado, Illinois,
Wisconsin) showing sustained transmission
from young adults since August. This suggests
that additional interventions among adults aged
20 to 49, including rapid mass vaccination if
vaccines prove to block transmission, could
bring resurgent COVID-19 epidemics under
control.

The majority of COVID-19 infections originate
from age groups 20 to 49

To quantify how age groups contribute to
resurgent COVID-19, it is not enough to es-
timate reproduction numbers, because re-
production numbers estimate the number of
secondary infections per infectious individual,
and the number of infectious individuals varies
by age as a result of age-specific susceptibility
gradients and age-specific contact exposures.

We therefore considered the reconstructed
transmission flows and calculated from the
fitted model the contribution of each age
group to new infections in each US location
over time. Across all locations evaluated, we
estimate that until mid-August 2020, before
schools were considered to reopen in the first
locations in the model, the percentage contri-
bution to onward spread was 41.1% (40.7 to
41.4%) from individuals aged 35 to 49, com-
pared with 2.1% (1.6 to 2.8%) from individuals
aged 0 to 9, 4.0% (3.5 to 4.6%) from individ-
uals aged 10 to 19, 34.7% (33.9 to 35.5%) from
individuals aged 20 to 34, 15.3% (14.8 to 15.8%)
from individuals aged 50 to 64, 2.5% (2.2 to
2.9%) from individuals aged 65 to 79, and 0.3%
(0.3 to 0.3%) from individuals aged 80+ (table
S4). Spatially, the contribution of adults aged
35 to 49 was estimated to bemarkedly homo-
geneous across states, whereas the estimated
contributions of young adults aged 20 to 34
to COVID-19 spread tended to be higher in
southern, southwestern, and western regions
of the US (Fig. 4), in line with previous ob-
servations (4).

No substantial shifts in age-specific disease
dynamics over time

Over time, we found that the shares of age groups
among the observed COVID-19–attributable
deaths were markedly constant (Fig. 5A and
fig. S11), which stands in contrast to the large
fluctuations in the share of age groups among
reported cases (4). To test for shifts in the
share of age groups among COVID-19 infec-
tions, we next back-calculated the number of
expected, age-specific infections per calendar
month of aggregated COVID-19–attributable
deaths using meta-analysis estimates of the
age-specific COVID-19 infection fatality ratio
(20). This empirical analysis suggested no
statistically significant trends in the share of
age groups among COVID19 infections (Fig.
5B and fig. S12), which is further supported
by model estimates (Fig. 5C and fig. S13). On
the basis of the combined mobility and death
data, we find that the reconstructed fluctua-
tions in age-specific reproduction numbers
had a relatively modest impact on the con-
tribution of age groups to onward spread over
time, and no evidence that young adults aged
20 to 34 were the primary source of resurgent
COVID-19 in the US over the summer of 2020.
These results underscore that, when testing
rates are heterogeneous and not population
representative, it is challenging to determine
the age-specific pattern of transmission based
only on reported case data.

School reopening has not resulted in substantial
increases in COVID-19–attributable deaths

Between August and October 2020, school
closure mandates have been lifted in 39 out of
40 of the US locations evaluated in this study

Monod et al., Science 371, eabe8372 (2021) 26 March 2021 3 of 12
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Fig. 2. Model fits and key generated quantities for New York City, California, Florida, and Arizona. (Left) Observed cumulative COVID-19 mortality
data (dots) versus posterior median estimate (line) and 95% credible intervals (ribbon). The vertical line indicates the collection start date of age-specific
death counts. (Middle) Estimated number of infectious individuals by age (posterior median). (Right) Estimated age-specific effective reproduction
number, posterior median estimate (line) and 95% credible intervals (ribbon).
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Fig. 3. Time evolution of estimated age-specific SARS-CoV-2 reproduction numbers across the US. Each panel shows, for the
corresponding location (state or metropolitan area), the estimated posterior probability that the daily effective reproduction number from individuals
stratified in seven age groups was below one. Darker colors indicate a low probability that reproduction numbers were below one.
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and provided 2570 observation days to esti-
mate the impact of school reopening on
COVID-19 spread. The following analyses are
therefore based on fewer data points than
those mentioned previously and rely on mor-
tality figures accrued until the end of October
2020, as well as reported school case data from
Florida and Texas, which were used to define
lower and upper bounds on cumulative attack
rates among children and teens aged 5 to 18
(see materials and methods). Reflecting stut-
tering transmission chains in school settings,
reproduction numbers from children aged 0
to 9 and teens aged 10 to 19 were estimated
at below one [respectively, 0.52 (0.42 to 0.60)
and 0.73 (0.57 to 0.88)] after schools were
considered to have reopened in the model
(Fig. 3 and table S2). Reproduction numbers
from children were lower than those from
teens because at a population level, preschoolers
have fewer contacts than school-aged chil-
dren (fig. S6).
Since school closure mandates were lifted,

the higher reproduction numbers from chil-

dren and teens resulted in age shifts in the
sources of SARS-CoV-2 infections. In October
2020, an estimated 2.7% (1.8 to 3.7%) of in-
fections originated from children aged 0 to 9,
7.1% (4.5 to 10.3%) from teens aged 10 to 19,
34.0% (31.9 to 36.4%) from adults aged 20 to
34, 38.2% (36.7 to 39.4%) from adults aged 35
to 49, 15.1% (14.1 to 16.1%) from adults aged
50 to 64, 2.5% (2.2 to 2.9%) from individuals
aged 65 to 79, and 0.3% (0.2 to 0.3%) from
individuals aged 80+ across all locations eval-
uated (compare table S5 and table S4). The
reconstructed shifts in the age of COVID-19
sources after school reopening are relatively
modest compared to the typical age profile of
infection sources of pandemic influenza (21)
and reflect a lower age-specific susceptibility
to SARS-CoV-2 transmission among children
and teens but also substantially fewer, inferred
disease-relevant contacts from children and
teens than would be expected from their cor-
responding prepandemic contact intensities.
The mechanisms behind these beneficial ef-
fects remain unclear, but the model suggests

that they are substantial. In retrospective
counterfactual scenarios, we explored what
COVID-19 case and death trajectories would
have been expected if schools had remained
closed and find a large overlap between the
counterfactual and actual case and death
trajectories (Fig. 6 and fig. S15). However,
because children and teens seed infections in
older age groups that are more transmission
efficient, as of October 2020, school opening
is associated with an estimated 25.7% (14.5
to 40.5%) increase in COVID-19 infections
and a 5.9% (3.4 to 9.3%) increase in COVID-
19–attributable deaths (table S7). Larger
proportions of COVID-19 infections and deaths
are attributed to school reopening if the actual
number of cases among school-aged children
is more than six times as large as the number
in school situation reports (table S7). These
findings indicate that adults aged 20 to 34 and
35 to 49 continue to be the only age groups
that contribute disproportionately to COVID-
19 spread relative to their size in the popula-
tion (fig. S14) and that the impact of school
reopening on resurgent COVID-19 ismitigated
most effectively by strengthening disease con-
trol among adults aged 20 to 49.

Caveats

The findings of this study need to be con-
sidered in the context of the following limi-
tations. Rossen and colleagues (22) observed
that US excess deaths between the beginning
of the pandemic and October 2020 were 38%
higher than the reported COVID-19–attributable
deaths, suggesting that the death data on
which this analysis rests are subject to under-
reporting. The scale of the US epidemics may
be larger than we infer, and our age-specific
analyses may be biased if underreporting of
deaths depends on age. However, owing to the
high proportion of asymptomatic COVID-19
cases (5), underreporting is a substantially
larger caveat for reported case data, and in
particular the observed shifts in the share of
age groups among reported cases (4, 23), which
are absent from the share of age groups among
reported deaths (fig. S11). This suggests that
age-specific death data provide amore reliable
picture into resurgent COVID-19 epidemics
than reported cases.We further rely on limited
data from two contact surveys performed in
the United Kingdom and China to characterize
contact patterns from and to younger indi-
viduals during school-closure periods (7, 8),
and this could have biased our findings that
children and teens have contributed negligibly
to SARS-CoV-2 spread until school reopening.
To address this limitation, we explored the
impact of higher intergenerational contact
intensities involving children during school
closure periods, and in these analyses the esti-
mated contribution of children aged 0 to 9 to
onward spread until August 2020 remained
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below 5% and the contribution of teens aged
10 to 19 remained below 12.5% (see supple-
mentarymaterials). Epidemiologic models are
sensitive to assumptions about the infection
fatality ratio (IFR) that enables the estimation
of actual cases from observed deaths by age.
Our analyses are based on ameta-analysis that
consolidates estimates from 27 studies and 34
geographic locations (20). To test the assumed
IFR, we compared the scale of the estimated
resurgent epidemics against data from sero-
prevalence surveys conducted by the Centers
for Disease Control and Prevention (CDC) (24)
and found good congruence (table S6 and
supplementary materials). The COVID-19 epi-
demic ismore granular than considered in our
spatialmodeling approach. Substantial hetero-
geneity in disease transmission exists at the
county level (25), and our situation analyses by
state and metropolitan areas should be inter-
preted as averages. Without exception, the
model underlying our analyses also relies on
simplifying mathematical assumptions on
population-level disease spread, which may
be shown unsuitable as further evidence on
SARS-CoV-2 transmission accumulates (26).
For instance, the model assumes that children
and teens transmit SARS-CoV-2 as readily as

do adults, which has been challenging to
quantify to date (27), and falls short of ac-
counting for population structure other than
age, such as household settings, where attack
rates have been estimated to be substantially
higher than in non-household settings (28). It
is possible that the model underestimates the
impact of school reopening on SARS-CoV-2
transmission.
Data from countries that have reopened

schools have provided little evidence for sub-
stantial transmission in schools, nor for signi-
ficantly increased community-level infection
rates after school reopening until the emergence
of more transmissible SARS-CoV-2 variants
(29, 30), but this might reflect frequent sub-
clinical infection among school-aged children.
More-transmissible SARS-CoV-2 variants could
increase reproduction numbers to above one
from all age groups, which implies substantial
spread from all age groups, and require gen-
erally stricter control measures across all ages
to prevent COVID-19–attributable deaths (31).

Conclusions

This study provides evidence that the resurgent
COVID-19 epidemics in the US in 2020 have
been driven by adults aged 20 to 49 and, in

particular, adults aged 35 to 49, before and
after school reopening. Unlike pandemic in-
fluenza, these adults accounted, after school
reopening in October 2020, for an estimated
72.2% (68.6 to 75.9%) of SARS-CoV-2 infec-
tions in the US locations considered, whereas
less than 5% originated from children aged 0
to 9 and less than 10% from teens aged 10 to
19. The population mobility data, and the
death data provided by state and city Depart-
ments of Health, reveal heterogeneous disease
spread in the US, with higher transmission
risk per venue visit attributed to individuals
aged 20 to 49 over distinct time periods and
younger epidemics with a greater share of
individuals aged 20 to 34 among cumulative
infections in the southern, southwestern, and
western regions of the US. Over time, the share
of age groups among reported deaths has
beenmarkedly constant, suggesting that young
adults are unlikely to have been the primary
source of resurgent epidemics since summer
2020 and that, instead, changes in mobility
and behavior among the broader group of
adults aged 20 to 49 underlie resurgent COVID-
19 in the US in 2020. This study indicates that
in locations where novel, highly transmissi-
ble SARS-CoV-2 lineages have not yet become
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established, additional interventions among
adults aged 20 to 49, such asmass vaccination
with transmission-blocking vaccines, could
bring resurgent COVID-19 epidemics under
control and avert deaths.

Materials and methods

To characterize the role of age groups in
driving resurgent COVID-19, we have taken a
systematic approach that involved data collec-
tion, mathematical modeling, likelihood-based
inference, and validation against external data.
The following sections summarize our mate-
rials and methods, and full technical details
are in the Data Availability Statement and
the supplementary Materials.

Data and data processing

The analyses presented in this study are based
on age-specific COVID-19 attributable mortal-
ity counts that were collected daily from US
state and city Departments of Health (DoH),
all-age COVID-19 death counts, all-age COVID-
19 case counts, COVID-19 case counts in school
settings K1-K15, human contact data before
and during the pandemic, and human mobil-
ity data during the pandemic.
Briefly, age-specific COVID-19 cumulative

death counts were retrieved for 42 US states,
the District of Columbia and New York City
from city or state DoH websites, data reposi-
tories, or via data requests to DoH (table S8).
Data were checked for consistency and ad-
justedwhen necessary. Age-specific COVID-19
death time series were reconstructed from
cumulative counts, and the time series were
used for model fitting (32).
All-age daily COVID-19 case and death counts

from 1 February 2020 until 30 October 2020
regardless of age were obtained from Johns
Hopkins University (JHU) for all US states
and the District of Columbia (3), except New
York City. For New York City, daily COVID-19
deaths counts were obtained from the GitHub
Repository (33). The all-age death counts
were used for model fitting prior to when
age-specific death counts were reported for
each location, and all-age case counts were
used for model fitting for the entire study
period.
COVID-19 case counts in school settings

K1-K15 were retrieved for Florida and Texas
and matched with student enrolment num-
bers in each school from the Common Core of
Data Americas Public Schools database (34).
Cumulative attack rates were obtained by
dividing cumulative reported cases among
students by student numbers, and used for
model fitting.
Human contact data before the pandemic

were obtained from the Polymod study (6),
and used to predict baseline contact matrices
during the early part of the pandemic for each
location, similar as in (18). Given the variation

in contact patterns seen across survey settings,
baseline contact matrices for each study loca-
tion in the US were predicted based on each
location’s population density and age compo-
sition with a log linear regression model. Age-
specific population counts were obtained from
(35). Area measurements were obtained for
every US state and for New York City, re-
spectively, from (36) and (37). Contact ma-
trices were predicted by 5-year age bands for
weekdays andweekends, andused in themodel.
Human contact data during the pandemic
were retrieved from two surveys (7, 8), and
used in the model to specify contact patterns
from and to individuals aged 0 to 19 during
periods of school closure.
Age-specific human mobility trends were

derived from the Foursquare Labs Inc. US
first-party panel that includes >10 million of
opt-in, always-on active users. From operated
and partner apps, Foursquare collects a variety
of device signals against opted-in users includ-
ing intermittent device GPS coordinate pings,
WiFi signals, cell signal strength, device model,
and operating system version. A smaller set of
labeled explicit check-ins is captured from a
portion of the user panel. Check-ins are explicit
confirmations that a user was at a given venue
at a given point of time, and serve as training
labels for a nonlinear model that is used to
predict visits among users with unlabeled visits
in terms of probabilities as to which venue
users ultimately visited (11). Visit probabilities
amongpanellistswere processed and aggregated
by day, age, and study location, and stand-
ardized to daily per capita visits using latest
US Census data. Percent changes in daily venue
visits by age and study location were obtained
relative to the baseline period 3 February to
9 February 2020 and used for analysis and
model fitting. For validation purposes, a second
mobility data set was obtained from Emodo.
The Emodo data set quantifies the proportion
of individuals with at least one observed ping
outside the user’s home location, out of a panel
of individuals whose GPS enabled devices
emitted at least one ping on the corresponding
day. Primary data were similarly aggregated
by day, age, and study location, standardized
to daily per capita visits using latest US Census
data, and mobility trends were calculated
relative to the baseline period 19 February to
3 March 2020.

Statistical analysis of human mobility data and
COVID-19–attributable death data

The age-specific human mobility data showed
marked time trends, whichwere characterized
in terms of three phases defined by the dip date
after which the 15-day moving average fell
below 10% compared to the average value in
the two prior weeks, and the rebound date
that corresponded to the date at which the
15-day moving average was lowest. Differ-

ences in the mobility trends relative to the
February baseline period, before and after
rebound dates, and relative to individuals aged
35 to 44 were assessed using Gamma regres-
sion models using log link and location by age
interaction covariates.
To characterize the time evolution of deaths

across locations and validate model fits, age-
specific COVID-19–attributable deaths among
the same age strata across locations were pre-
dicted by month with a Dirichlet-Multinomial
regression model. Trends in the share of age
groups among monthly deaths were assessed
by testing for differences in the proportions
in the first month relative to subsequent
months.
To test for potential differences in age-

specific transmission dynamics based on the
collected death data and without epidemic
models,meta-analysis estimates of age-specific
infection fatality ratios (20) were used to pre-
dict the share of age groups among infections
frommonthly age-specific deaths. Trends in the
share of age groups among monthly infections
were assessed by testing for differences in the
proportions in the first month relative to sub-
sequent months.

Contact-and-infection model

To quantify age-specific aspects of COVID-19
spread in heterogeneous populations, we
formulated an age-specific, discrete-time re-
newal model in which disease transmission
occurs via contact intensities between pop-
ulation groups stratified by 5-year age bands.
The model has four key features described
below. First, contact intensities vary in time
and are inferred from signatures in the age-
specific mortality and mobility data. This
feature aims to reflect the substantial changes
in human contact patterns during the pan-
demic (7–9). Second, the challenge and val-
ue of the model to produce generalizable
knowledge is to explain disease spread across
multiple locations with distinct demograph-
ics simultaneously. To this end, the renewal
equations were embedded into a hierarchi-
cal model in which information on disease
spread is borrowed across locations (1, 38).
Third, the model describes disease spread
during the initial and later phase of the pan-
demic, as mobility patterns become less cor-
related with transmission risk and schools
reopen (39, 40). This feature allowed us to
test for changes in disease dynamics over
time. Fourth, the model is fitted in a Bayesian
framework to the all-age and age-specific
death data, all-age case data, case data from
schools, and age-specific human mobility
trends (41). This feature forced us to focus
on a model whose parameters are inferable
from the data across all locations. The model
is described in detail in the supplementary
materials.
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Briefly, we consider populations stratified
by the 5-year age bands A, such that

a ∈ A = {[0-4], [5-9], …, [75-79], [80-84],
[85+]} (1)

and denote the number of new infections, c,
on day t, in age group a, and location m as
cm;t;a . In the renewal equation, past infections
are weighted by their relative infectiousness
on day t, and the sum of these individuals
has contacts with individuals in other age
groups. Contacts are described by the expected
number of disease relevant human contacts
one person in age group a has with other indi-
viduals in age group a’ on day t in location m,
cm;t;a;a′ . Upon contact, a proportion sm;t;a′ of
individuals in age group a’ on day t in loca-
tion m remains susceptible to SARS-CoV-2
infection, and transmission occurs with proba-
bility ra0 . Thus, the age-specific renewal equa-
tion with time-changing contact intensities is

cm;t;a′ ¼

sm;t;a′ra′ ∑
a
Cm;t;a;a′ð∑t�1

s¼1
cm;s;a gðt� sÞÞ ð2Þ

where g quantifies the relative infectious-
ness of individuals s days after infection. An
important feature of SARS-CoV-2 transmis-
sion is that similarly to other coronaviruses
but unlike pandemic influenza (42), suscep-
tibility to SARS-CoV-2 infection increases with
age (7, 21, 43). Here, we used contact tracing
data from Hunan province, China (7) to spec-
ify lower susceptibility to SARS-CoV-2 infec-
tion among children aged 0 to 9, and higher
susceptibility among individuals aged 60+,
when compared to the 10 to 59 age group as
part of the transmission probabilities ra′ . Previ-
ously infected individuals are assumed to be
immune to re-infection within the analysis
period, consistent with mounting evidence
for sustained antibody responses to SARS-
CoV-2 antigens (44, 45), so that

sm;t;a′ ¼ 1�∑
t�1

s¼1
cm;s;a′

Nm;a′
; ð3Þ

where Nm;a′ denotes the population count
in age group a’ and location m.
For adults aged 20+, the time changing

contact intensities were described in terms of
the prepandemic baseline contact intensities
in locationm, which we denote byCm;t;a;a′, and
expected reductions in disease relevant con-
tacts from contacting individuals of age a on
day t in locationm, which we denote by hm;t;a,
and contacted individuals of age a’ on day t in
locationm, hm;t;a′

Cm;t;a;a′ ¼ hm;t;a Cm;a;a′ hm;t;a′ ; ð4Þ
where a, a’ ∈ {[20−24], ..., [85+]}. Expected
reductions in disease relevant contacts were

specified as a random effects model that in-
cluded the observed age-specific mobility
trends as covariates. In the model, each age-
specific mobility trend was decoupled into
three separate covariates that reflect the initial
pre-pandemic, dip, and rebound phases in hu-
man mobility trends, so that previously ob-
serveddecreases in correlationbetweenmobility
trends and transmission risk could be captured
(40, 41, 46). As the same number of venue visits
in, e.g., Wyoming may translate to different
transmission risk than in e.g., New York City,
spatial random effects allowed for scaling of
mobility trends during the dip and rebound
phase in each location. As venue visits do not
capture all aspects of transmission risk, the
model further incorporates independently
for each location autocorrelated biweekly ran-
dom effects to capture information on elevated,
disease relevant contact intensities and trans-
mission risk that is present in the death time
series data. To test for age-specific signatures
of elevated transmission risk, themodel further
included for each location age-specific random
effects for individuals aged 20 to 49.
For children and teens aged 0 to 20, mobility

data are not available, and during periods of
school closure the contact intensities from and
to children and teens were set to the average
contact intensities reported in (7). This im-
plied that relative to pre-pandemic contact
patterns, peer-based contacts were substan-
tially reduced, whereas contacts from an adult
to children and teens increased slightly. In the
model, schools were set to reopen on or after
24 August 2020 when state administrations
no longer mandated statewide school closures
by that date (47, 48). Thereafter, Eq. 4 was ex-
tended to include children and teens, and
expected mobility reductions were estimated
from the case and death data. In the absence
of further data, a common average effect could
be estimated across locations and children
and teen age groups for the last two observa-
tionmonths,hm;t;a ¼ hchildren for a ∈ [0− 20]. A
further compound effect g was added to
modulate the number of disease relevant child/
teen child/teen contacts, which we interpreted
as reduced infectiousness from children
and teens and/or a positive impact of non-
pharmaceutical interventions among school
aged children and teens.

Bayesian inference

Past age-specific disease dynamics across all
locations were inferred from age-specific death
data available across locations, and age-specific
mobility data. To do this, in the model, a
proportion pm;a of new infections in location
m of age a die, and the day of death is
determined by the infection-to-death distribu-
tion, which was assumed to be constant across
age groups. The proportions pm;a were as-
sociated with a strongly informative prior

derived from the meta-analysis of (20), but
were allowed to deviate from the baseline
infection fatality ratio through location-specific
randomeffects. The expected number of deaths
in location m on day t in age group a, dm;t;a,
were aggregated to the reporting strata in
each location, and fitted to the observed data
using a Negative Binomial likelihood model.
When age-specific death data were not avail-
able, themodel was fitted to all-age death data
with a Negative Binomial likelihood model.
All-age case data were smoothed, and used to
specify a lower bound on the overall number of
infections cm;t ¼ ∑

a
cm;t;a through a student-t

cumulative density likelihoodmodel. Case data
from schools were used to calculate empirical
attack rates in school settings during specified
observation windows. In turn, the empirical
attack rates were used to describe a lower
bound on the actual attack rate among 5 to
18-year-old children and teens in the same ob-
servation periods in themodel, using a normal
cumulative density likelihood model. An upper
bound on the actual attack rates was also
specified by assuming that actual cases in
school settings were underreported at most
10-fold, using a normal complementary cumu-
lative density likelihood model. The contact-
and-infectionmodel was fitted with CmdStan
release 2.23.0 (22 April 2020), using an adapt-
ive Hamiltonian Monte Carlo (HMC) sampler
(41). 8 HMC chains were run in parallel for
1,000 iterations, of which the first 400 iter-
ations were specified as warm-up. There were
no divergent transitions.

Generated quantities

Results were reported in the age bands d ∈ D =
{[0−9], [10−19], [20−34], [35−49], [50 to 64],
[65 to 79], [80+]}. The primary model outputs
were aggregated correspondingly, e.g. the num-
ber of new infections in locationm on day t in
reporting age groupdwascm;t;d ¼ ∑

a∈d
cm;t;a. The

effective number of infectious individuals c∗

in location m and age group d on day t was
calculated based on the renewal model (2),

c�m;t;d ¼ ∑
t�1

s¼1
cm;s;d gðt � sÞ, and is shown inFig. 2.

Following (2), the time-varying reproduction
number on day t from one infectious per-
son in age group a in location m is Rm;t;a ¼
∑
a′
sm;t;a′ ra′ Cm;t;a;a′ , and the reproduction

numbers were aggregated to the reporting
strata based on the identity Rm;t;d ¼∑

a∈d
ðc�m;t;aÞ=

ð∑
k∈d

c�m;t;kÞRm;t;a , and are shown in Fig. 2 and

tables S1 and S2. The transmission flows
from age group a to age group a’ at time
t in location m are given by Fm;t;a;a′ ¼
sm;t;a′ra′Cm;t;a;a′

�
∑
t�1

s¼1
cm;s;agðt � sÞ

�
, and are

aggregated using Fm;t;d;d ′ ¼∑
a∈d;a′∈d′

Fm;t;a;a′. In
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turn, the contributions of age groups to COVID-19
spreadareSm;t;d ¼ ð∑

d′

Fm;t;d;d′Þ=ð∑
d

∑
d′

Fm;t;d;d′Þ,
and are reported in tables S4. Cumulated
COVID-19 attack rates were calculated through

Am;t;d ¼ ð∑t
s¼1

cm;s;dÞ=ðNm;dÞ, where Nm;d is the

number of individuals in location m and age
group d, and are reported in table S6.

Validation and sensitivity analyses

Reconstructed past transmission dynamics
were assessed against external data on the
scale of the epidemic from seroprevalence
surveys conducted across the US by the CDC
(24). Validation results are reported in the
supplementary materials, suggesting larger
discrepancies between model fit and seropre-
valence data for Connecticut and New York
City, with larger epidemics reconstructed in
the model than the data suggest. The contact-
and-infection model does not account for
sustained spatial importation of SARS-CoV-
2 infections such as from New York City to
Connecticut, and may have over-estimated
the magnitude of self-sustaining epidemic in
locations receiving sustained SARS-Cov-2
importations. However, we also note that the
Connecticut seroprevalence estimates pre-
dict an infection to observed case ratio that
is substantially below those of the other CDC
seroprevalence studies. The inferred contact
patterns were assessed against external data
from the BICS study that quantified human
contact patterns during the pandemic (9). Vali-
dation results are reported in the supple-
mentarymaterials, suggesting similarly strong
reductions in human contact intensities as
in the survey data. Disaggregated by age, the
model reproduces highest contact intensities
among 35- to 44-year-old individuals, compar-
atively lower contact intensities from individu-
als aged 45+, and largest reductions in contact
intensities from individuals aged 25 to 34. The
survey data suggest that contact intensities
from individuals aged 18 to 24 could be higher
than reconstructed through the contact-and-
infection model, but we also note large con-
fidence intervals around the survey estimates.
Sensitivity analyses were conducted to as-

sess central modeling assumptions on the in-
fection fatality ratio, contact intensities among
children and teens during periods of school
closure, relative susceptibility of children and
teens to SARS-CoV-2 infection, and are reported
in the supplementary materials. Our find-
ings on the age groups that drive SARS-CoV-
2 transmission were found to be robust to
these assumptions.
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