231 research outputs found

    Tuning of Collagen Scaffold Properties Modulates Embedded Endothelial Cell Regulatory Phenotype in Repair of Vascular Injuries In Vivo

    Get PDF
    Perivascularly implanted matrix embedded endothelial cells (MEECs) are potent regulators of inflammation and intimal hyperplasia following vascular injuries. Endothelial cells (ECs) in collagen scaffolds adopt a reparative phenotype with significant therapeutic potential. Although the biology of MEECs is increasingly understood, tuning of scaffold properties to control cell-substrate interactions is less well-studied. It is hypothesized that modulating scaffold degradation would change EC phenotype. Scaffolds with differential degradation are prepared by cross-linking and predegradation. Vascular injury increases degradation and the presence of MEECs retards injury-mediated degradation. MEECs respond to differential scaffold properties with altered viability in vivo, suppressed smooth muscle cell (SMC) proliferation in vitro, and altered interleukin-6 and matrix metalloproteinase-9 expression. When implanted perivascularly to a murine carotid wire injury, tuned scaffolds change MEEC effects on vascular repair and inflammation. Live animal imaging enables real-time tracking of cell viability, inflammation, and scaffold degradation, affording an unprecedented understanding of interactions between cells, substrate, and tissue. MEEC-treated injuries improve endothelialization and reduce SMC hyperplasia over 14 d. These data demonstrate the potent role material design plays in tuning MEEC efficacy in vivo, with implications for the design of clinical therapies.National Institutes of Health (U.S.) (Grant R01 GM 49039

    Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway

    Get PDF
    Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway

    Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues

    Get PDF
    Hormones and nutrients often induce genetic programs via signaling pathways that interface with gene-specific activators. Activation of the cAMP pathway, for example, stimulates cellular gene expression by means of the PKA-mediated phosphorylation of cAMP-response element binding protein (CREB) at Ser-133. Here, we use genome-wide approaches to characterize target genes that are regulated by CREB in different cellular contexts. CREB was found to occupy approximate to 4,000 promoter sites in vivo, depending on the presence and methylation state of consensus cAMP response elements near the promoter. The profiles for CREB occupancy were very similar in different human tissues, and exposure to a cAMP agonist stimulated CREB phosphorylation over a majority of these sites. Only a small proportion of CREB target genes was induced by cAMP in any cell type, however, due in part to the preferential recruitment of the coactivator CREB-binding protein to those promoters. These results indicate that CREB phosphorylation alone is not a reliable predictor of target gene activation and that additional CREB regulatory partners are required for recruitment of the transcriptional apparatus to the promoter

    Exposure to Uteroplacental Insufficiency Reduces the Expression of Signal Transducer and Activator of Transcription 3 and Proopiomelanocortin in the Hypothalamus of Newborn Rats

    Get PDF
    IUGR has been linked to the development of type 2 diabetes. Recent data suggest that some of the molecular defects underlying type 2 diabetes reside in the CNS. Disruption of the signal transducer and activator of transcription 3 (STAT3) in the hypothalamic neurons expressing leptin receptor, results in severe obesity, hyperglycaemia, and hyperinsulinemia. Our aim was to investigate the expression of STAT3 and its downstream effector proopiomelanocortin (POMC) in IUGR rats obtained by uterine artery ligation. On day 19 of gestation, time-dated Sprague-Dawley pregnant rats were anesthetized, and both the uterine arteries were ligated. At birth, hypothalamus was dissected and processed to evaluate the expression of STAT3, its phosphorylated form, and POMC. STAT3 mRNA, STAT3 protein, phosphorylated STAT3, POW mRNA, and POMC protein were significantly reduced in IUGR versus sham animals (p < 0.0001. p < 0.05 and p < 0.001, p < 0.01, p < 0.01 respectively). No significant differences either in serum leptin concentrations or in hypothalamic leptin receptor expression were observed. Our results suggest that an abnormal intrauterine milieu call affect the hypothalamic expression of STAT3 and POW at birth. altering the hypothalamic signaling pathways that regulate the energy homeostasis. (Pediatr Res 66: 208-211, 2009

    B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus

    Get PDF
    Background: Neuropsychiatric lupus (NPSLE) can be one of the earliest clinical manifestations in human lupus. However, its mechanisms are not fully understood. In lupus, a compromised blood-brain barrier may allow for the passage of circulating autoantibodies into the brain, where they can induce neuropsychiatric abnormalities including depression-like behavior and cognitive abnormalities. The purpose of this study was to determine the role of B cells and/or autoantibodies in the pathogenesis of murine NPSLE. Methods: We evaluated neuropsychiatric manifestations, brain pathology, and cytokine expression in constitutively (JhD/MRL/lpr) and conditionally (hCD20-DTA/MRL/lpr, inducible by tamoxifen) B cell-depleted mice as compared to MRL/lpr lupus mice. Results: We found that autoantibody levels were negligible (JhD/MRL/lpr) or significantly reduced (hCD20-DTA/MRL/lpr) in the serum and cerebrospinal fluid, respectively. Nevertheless, both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice showed profound depression-like behavior, which was no different from MRL/lpr mice. Cognitive deficits were also observed in both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice, similar to those exhibited by MRL/lpr mice. Furthermore, although some differences were dependent on the timing of depletion, central features of NPSLE in the MRL/lpr strain including increased blood-brain barrier permeability, brain cell apoptosis, and upregulated cytokine expression persisted in B cell-deficient and B cell-depleted mice. Conclusions: Our study surprisingly found that B cells and/or autoantibodies are not required for key features of neuropsychiatric disease in murine NPSLE

    Will Democracy Endure Private School Choice? The Effect of the Milwaukee Parental Choice Program on Adult Voting Behavior

    Get PDF
    We employ probit regression analysis to compare the adult voting activity of students who participated in the Milwaukee Parental Choice Program (MPCP) to their matched public school counterparts. We use a sophisticated matching algorithm to create a traditional public school student comparison group using data from the state-mandated evaluation of the MPCP. By the time the students are 19-26 years old, we do not find evidence that private school voucher students are more or less likely to vote in 2012 or 2016 than students educated in public schools. These results are robust to all models and are consistent for all subgroups

    Aphids acquired symbiotic genes via lateral gene transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist <it>Buchnera aphidicola </it>(γ-Proteobacteria). <it>Buchnera </it>has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid <it>Acyrthosiphon pisum</it>, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR.</p> <p>Results</p> <p>Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes <it>ldcA </it>(product, LD-carboxypeptidase) and <it>rlpA </it>(product, rare lipoprotein A), respectively. <it>Buchnera </it>lacks these genes, whereas many other bacteria, including <it>Escherichia coli</it>, a close relative of <it>Buchnera</it>, possess both <it>ldcA </it>and <it>rlpA</it>. Molecular phylogenetic analysis clearly demonstrated that the aphid <it>ldcA </it>was derived from a rickettsial bacterium closely related to the extant <it>Wolbachia </it>spp. (α-Proteobacteria, Rickettsiales), which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of <it>rlpA </it>was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that <it>ldcA </it>and <it>rlpA </it>are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan), which is a component of the bacterial cell wall. As <it>Buchnera </it>possesses a cell wall composed of murein but lacks <it>ldcA</it>, a high level of expression of the aphid <it>ldcA </it>in the bacteriocyte may be essential to maintain <it>Buchnera</it>. Although the function of RlpA is not well known, conspicuous up-regulation of the aphid <it>rlpA </it>in the bacteriocyte implies that this gene is also essential for <it>Buchnera</it>.</p> <p>Conclusion</p> <p>In this study, we obtained several lines of evidence indicating that aphids acquired genes from bacteria via lateral gene transfer and that these genes are used to maintain the obligately mutualistic bacterium, <it>Buchnera</it>.</p

    The Chemistry of Griseofulvin

    Get PDF

    Cellular Tropism, Population Dynamics, Host Range and Taxonomic Status of an Aphid Secondary Symbiont, SMLS (Sitobion miscanthi L Type Symbiont)

    Get PDF
    SMLS (Sitobion miscanthi L type symbiont) is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species
    corecore