7 research outputs found

    Strongyloides stercoralis infection in dogs in Austria: two case reports.

    Get PDF
    BACKGROUND Strongyloides stercoralis is endemic in tropical and subtropical regions, but reports of infections in central and northern Europe have been recently increasing. Infections occur mainly in humans and dogs. In dogs, both dog-adapted and zoonotic S. stercoralis genotypes seem to occur. Clinical manifestations mainly include gastrointestinal and respiratory signs. The severity of the disease can vary greatly and depends on the immune status of the host. The infection is potentially fatal in immunosuppressed individuals, either medically induced or due to an underlying disease, in which hyperinfections and disseminated infections with extraintestinal parasite dissemination may occur. METHODS Diagnosis was based on coproscopy, including flotation and the Baermann funnel technique, histology of small intestinal biopsies and molecular analysis of mitochondrial cytochrome oxidase subunit I (COI) and hypervariable regions I and IV (HVR I and HVR IV) of the nuclear 18S rDNA loci. RESULTS Two independent cases of severe canine S. stercoralis infection in Austria are presented. In both cases, S. stercoralis was detected in histological sections of the small intestine and with the Baermann funnel technique. Molecular analysis revealed strains with zoonotic potential. Case 1 was a 1-year-old female French bulldog with a long history of respiratory and gastrointestinal signs, severe emaciation and apathy before S. stercoralis infection was diagnosed. Treatment with moxidectin (2.5 mg/kg body weight [BW], oral route) did not eliminate the infection, but treatment with ivermectin (0.2 mg/kg BW, subcutaneously) was successful. Case 2 consisted of two 2-month-old Pomeranian puppies, one female and one male, from a litter of four, which died soon after presenting dyspnoea and haemorrhagic diarrhoea (female) or torticollis (male); S. stercoralis infection was first diagnosed post-mortem. CONCLUSION More attention should be paid to this nematode because although it appears to be rare in Austria, it is easily overlooked on standard coproscopy unless a Baermann funnel technique is used, and even then, it can be missed. Moxidectin is not always successful in eliminating the infection, and treatment with ivermectin should be considered in cases of infection

    Autochthonous Onchocerca lupi infection of a domestic dog in Austria

    No full text
    Abstract Onchocerca lupi is an emerging canine ocular pathogen with zoonotic potential. In Europe, known endemic areas are the Iberian Peninsula and Greece, but the parasite has also been found in Romania, Hungary, and Germany. A 5-year-old Irish Wolfhound was presented in August 2021 with ocular discharge. A subconjunctival granulomatous nodule containing several nematode fragments was removed. Molecular analysis of the mitochondrial cytochrome c oxidase subunit I gene confirmed the presence of O. lupi genotype 1. This is the first report of autochthonous O. lupi infection in a dog from Austria. Graphical Abstrac

    Emergence of Parafilaria bovicola in Austria

    No full text
    Veterinarians reported cases of cutaneous bleeding in cattle in Austria in the spring and summer of 2020. It was our goal to confirm the tentative diagnosis of parafilariosis by identifying Parafilaria bovicola in exudate samples using molecular methods for the first time in Austria. We asked veterinarians in the field to collect exudate from typical lesions on cattle. We performed polymerase chain reactions (PCRs) and sequenced a 674-bp section of the mitochondrial cytochrome oxidase subunit I in all positive samples. Overall, in 57 of 86 samples, P. bovicola was confirmed by PCR in cattle from Lower Austria, Upper Austria, Styria, Salzburg, Carinthia, and Tyrol. Sequencing detected four different haplotypes or genotypes, respectively, indicating multiple routes of introduction. We conclude that parafilariosis has spread in Austria and we expect that the number of reports of clinical signs and losses due to carcass damage will increase in the future

    Dirofilaria spp. and Angiostrongylus vasorum: current risk of spreading in Central and Northern Europe

    Full text link
    In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autochthonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Luxemburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet movements, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changes; its pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe

    Dirofilaria spp. and Angiostrongylus vasorum

    Full text link
    Abstract In the past few decades, the relevance of Dirofilaria immitis and Dirofilaria repens, causing cardiopulmonary and subcutaneous dirofilariosis in dogs and cats, and of Angiostrongylus vasorum, causing canine angiostrongylosis, has steadily increased in Central and Northern Europe. In this review, a summary of published articles and additional reports dealing with imported or autochthonous cases of these parasites is provided for Central (Austria, Czechia, Germany, Hungary, Luxemburg, Poland, Slovakia, Slovenia, and Switzerland) and Northern (Denmark, Finland, Iceland, Norway, and Sweden) Europe. Research efforts focusing on Dirofilaria spp. and A. vasorum have varied by country, and cross-border studies are few. The housing conditions of dogs, pet movements, the spread of competent vectors, and climate change are important factors in the spread of these nematodes. Dogs kept outside overnight are a major factor for the establishment of Dirofilaria spp. However, the establishment of invasive, diurnal, synanthropic, competent mosquito vectors such as Aedes albopictus may also influence the establishment of Dirofilaria spp. The drivers of the spread of A. vasorum remain not fully understood, but it seems to be influenced by habitats shared with wild canids, dog relocation, and possibly climatic changesits pattern of spreading appears to be similar in different countries. Both Dirofilaria spp. and A. vasorum merit further monitoring and research focus in Europe

    Mosquito Alert - Leveraging Citizen Science to Create a GBIF Mosquito Occurrence Dataset

    No full text
    The Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014–2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems

    Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset

    Get PDF
    Este artículo contiene 13 páginas, 2 figuras.The Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014–2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems.This work was supported by: • 2021–2022 Fair Computational Epidemiology (FACE); Plataforma Temática Interdisciplinar PTI+ Salud Global, Consejo Superior de Investigaciones Científicas (CSIC); Grant No.: N/A. • 2020–2025 Human-Mosquito Interaction Project: Host-vector networks, mobility and the socio-ecological context of mosquito-borne disease; European Research Council (ERC); Grant No.: 853271. • 2020–2021 Strengthening Barcelona’s Defenses Against Disease-Vector Mosquitoes: Automatically Calibrated Citizen-Based Surveillance, Barcelona Ciència; Ajuntament de Barcelona, Institut de Cultura; Grant No.: BCNPC/00041. • 2020–2024 VEO: Versatile Emerging infectious disease Observatory, H2020 SC1-BHC-13-2019; European Commission (EC); Grant No.: 874735. • 2020–2025 Preparing for vector-borne virus outbreaks in a changing world: a One Health Approach; Dutch National Research Agenda (NWA); Grant No.: NWA/00686468. • 2019–2021 Big Mosquito Bytes: Community-Driven Big Data Intelligence to Fight Mosquito-Borne Disease; Fundació “La Caixa”, Health Research 2018 “la Caixa” Banking Foundation; Grant No.: HR19-00336. • 2018–2022 Aedes Invasive Mosquitoes (AIM), COST ACTION OC-2017-1-22105; European Cooperation in Science and Technology (COST); Grant No.: CA17108. • 2018 Mosquito Alert: programa para investigar y controlar mosquitos vectores de enfermedades como el Dengue, el Chikungunya y el Zika; Fundació “La Caixa”; Grant No.: N/A. • 2017–2019 Plataforma Integral per al Control de l’Arbovirosis a Catalunya (PICAT); Departament de Salut, Programa PERIS 2016–2020, Generalitat de Catalunya; Grant No.: 00466. • 2016–2018 Ciència ciutadana per a la millora de la gestió i els models predictius de dispersió i distribució real de mosquit tigre a la Província de Girona; Diputació de Salut de Girona (DIPSALUT); Grant No.: N/A. • 2016 Nuevas herramientas de participación en ciencia ciudadana: laboratorios de validación y cocreación para AtrapaelTigre.com; Fundación Española para la Ciencia y la Tecnología (FECYT); Grant No.: FCT-15-9515. • 2016–2017 Mosquito Alert: programa para investigar y controlar mosquitos vectores de enfermedades como el Dengue, el Chikungunya y el Zika; Fundació “La Caixa”; Grant No.: N/A. • 2016–2017 Ciència ciutadana per a la millora de la gestió i els models predictius de dispersió i distribució real de mosquit tigre a la Província de Girona; Diputació de Salut de Girona (DIPSALUT); Grant No.: N/A. • 2015–2016 Citizens-based early warning systems for invasive species and disease vectors: The case of the Asian Tiger mosquito; Fundació “La Caixa” and Centre de Recerca Ecològica i Aplicacions Forestals (CREAF); Grant No.: N/A. • 2014–2016 Invasión del mosquito tigre en España: Salud pública y cambio global; Ministerio de Economía y Competitividad, Plan Estatal I+D+I; Grant No.: CGL2013-43139-R. • 2014 Diseño e implementación de un sistema ciudadano de alerta y seguimiento del mosquito tigre: ciencia en sociedad (Atrapa el Tigre 2.0); Fundación Española para la Ciencia y la Tecnología (FECYT); Grant No.: FCT-13-701955.Peer reviewe
    corecore