1,324 research outputs found

    A comparison of measured and simulated solar network contrast

    Full text link
    Long-term trends in the solar spectral irradiance are important to determine the impact on Earth's climate. These long-term changes are thought to be caused mainly by changes in the surface area covered by small-scale magnetic elements. The direct measurement of the contrast to determine the impact of these small-scale magnetic elements is, however, limited to a few wavelengths, and is, even for space instruments, affected by scattered light and instrument defocus. In this work we calculate emergent intensities from 3-D simulations of solar magneto-convection and validate the outcome by comparing with observations from Hinode/SOT. In this manner we aim to construct the contrast at wavelengths ranging from the NUV to the FIR.Comment: Proceedings paper, IAU XXVII, Symposium 264, 3 page

    Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms

    Full text link
    We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semisynthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the total solar irradiance (TSI) on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2[+0.2, -0.3] Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-alpha composite.Comment: 13 pages, 10 figure

    Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface

    Full text link
    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).Comment: Supplementary Materials; https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.119.091102/supplementary_material_170801.pd

    Relativistic Quantum Measurements, Unruh effect and Black Holes

    Get PDF
    It is shown how the technique of restricted path integrals (RPI) or quantum corridors (QC) may be applied for the analysis of relativistic measurements. Then this technique is used to clarify the physical nature of thermal effects as seen by an accelerated observer in Minkowski space-time (Unruh effect) and by a far observer in the field of a black hole (Hawking effect). The physical nature of the "thermal atmosphere" around the observer is analysed in three cases: a) the Unruh effect, b) an eternal (Kruskal) black hole and c) a black hole forming in the process of collapse. It is shown that thermal particles are real only in the case (c). In the case (b) they cannot be distinguished from real particles but they do not carry away mass of the black hole until some of these particles are absorbed by the far observer. In the case (a) thermal particles are virtual.Comment: 24 pages (Latex), 8 EPS figures The text was edited for the new versio

    Cosmological Time in Quantum Supergravity

    Get PDF
    The version of supergravity formulated by Ogievetsky and Sokatchev is almost identical to the conventional N=1N=1 theory, except that the cosmological constant Λ\Lambda appears as a dynamical variable which is constant only by virtue of the field equations. We consider the canonical quantisation of this theory, and show that the wave function evolves with respect to a dynamical variable which can be interpreted as a cosmological time parameter. The square of the modulus of the wave function obeys a set of simple conservation equations and can be interpreted as a probability density functional. The usual problems associated with time in quantum gravity are avoided.Comment: 12 pages, LaTe

    Pseudo-Schwarzschild Spherical Accretion as a Classical Black Hole Analogue

    Full text link
    We demonstrate that a spherical accretion onto astrophysical black holes, under the influence of Newtonian or various post-Newtonian pseudo-Schwarzschild gravitational potentials, may constitute a concrete example of classical analogue gravity naturally found in the Universe. We analytically calculate the corresponding analogue Hawking temperature as a function of the minimum number of physical parameters governing the accretion flow. We study both the polytropic and the isothermal accretion. We show that unlike in a general relativistic spherical accretion, analogue white hole solutions can never be obtained in such post-Newtonian systems. We also show that an isothermal spherical accretion is a remarkably simple example in which the only one information--the temperature of the fluid, is sufficient to completely describe an analogue gravity system. For both types of accretion, the analogue Hawking temperature may become higher than the usual Hawking temperature. However, the analogue Hawking temperature for accreting astrophysical black holes is considerably lower compared with the temperature of the accreting fluid.Comment: Final Version to appear in the journal General Relativity & Gravitation, Volume 27, Issue 11, 2005. 17 pages, Two colour and one black and white figures. Typos corrected. Recent reference on analogue effect in relativistic accretion disc adde

    Quantum fields in gravity

    Full text link
    We give a brief description of some compelling connections between general relativity and thermodynamics through i) the semi-classical tunnelling method(s) and ii) the field-theoretical modelling of Unruh-DeWitt detectors. In both approaches it is possible to interpret some quantities in a thermodynamical frame.Comment: 4 pages, no figures, contribution to the proceedings of the conference "Relativity and Gravitation - 100 years after Einstein in Prague

    Fluctuation-dissipation theorem and the Unruh effect of scalar and Dirac fields

    Get PDF
    We present a simple and systematic method to calculate the Rindler noise, which is relevant to the analysis of the Unruh effect, by using the fluctuation-dissipative theorem. To do this, we calculate the dissipative coefficient explicitly from the equations of motion of the detector and the field. This method gives not only the correct answer but also a hint as to the origin of the apparent statistics inversion effect. Moreover, this method is generalized to the Dirac field, by using the fermionic fluctuation-dissipation theorem. We can thus confirm that the fermionic fluctuation-dissipation theorem is working properly.Comment: 26 page

    Comment on `Hawking radiation from fluctuating black holes'

    Full text link
    Takahashi & Soda (2010 Class. Quantum Grav. v27 p175008, arXiv:1005.0286) have recently considered the effect (at lowest non-trivial order) of dynamical, quantized gravitational fluctuations on the spectrum of scalar Hawking radiation from a collapsing Schwarzschild black hole. However, due to an unfortunate choice of gauge, the dominant (even divergent) contribution to the coefficient of the spectrum correction that they identify is a pure gauge artifact. I summarize the logic of their calculation, comment on the divergences encountered in its course and comment on how they could be eliminated, and thus the calculation be completed.Comment: 12 pages, 1 fig; feynmp, amsref

    Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach

    Get PDF
    We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale k0k_0 to the ordinary wave equation. Depending on the sign of this new term, high frequency modes propagate either superluminally or subluminally. We show that the resulting spectrum of created particles is thermal at the Hawking temperature, and further that the out-state is a thermal state at the Hawking temperature, to leading order in k0k_0, for either modification.Comment: 26 pages, plain latex, 6 figures included using psfi
    • …
    corecore