Abstract

It is shown how the technique of restricted path integrals (RPI) or quantum corridors (QC) may be applied for the analysis of relativistic measurements. Then this technique is used to clarify the physical nature of thermal effects as seen by an accelerated observer in Minkowski space-time (Unruh effect) and by a far observer in the field of a black hole (Hawking effect). The physical nature of the "thermal atmosphere" around the observer is analysed in three cases: a) the Unruh effect, b) an eternal (Kruskal) black hole and c) a black hole forming in the process of collapse. It is shown that thermal particles are real only in the case (c). In the case (b) they cannot be distinguished from real particles but they do not carry away mass of the black hole until some of these particles are absorbed by the far observer. In the case (a) thermal particles are virtual.Comment: 24 pages (Latex), 8 EPS figures The text was edited for the new versio

    Similar works

    Available Versions

    Last time updated on 03/01/2020