4,016 research outputs found
Inclusion of turbulence in solar modeling
The general consensus is that in order to reproduce the observed solar p-mode
oscillation frequencies, turbulence should be included in solar models.
However, until now there has not been any well-tested efficient method to
incorporate turbulence into solar modeling. We present here two methods to
include turbulence in solar modeling within the framework of the mixing length
theory, using the turbulent velocity obtained from numerical simulations of the
highly superadiabatic layer of the sun at three stages of its evolution. The
first approach is to include the turbulent pressure alone, and the second is to
include both the turbulent pressure and the turbulent kinetic energy. The
latter is achieved by introducing two variables: the turbulent kinetic energy
per unit mass, and the effective ratio of specific heats due to the turbulent
perturbation. These are treated as additions to the standard thermodynamic
coordinates (e.g. pressure and temperature). We investigate the effects of both
treatments of turbulence on the structure variables, the adiabatic sound speed,
the structure of the highly superadiabatic layer, and the p-mode frequencies.
We find that the second method reproduces the SAL structure obtained in 3D
simulations, and produces a p-mode frequency correction an order of magnitude
better than the first method.Comment: 10 pages, 12 figure
A Five-year Spectroscopic and Photometric Campaign on the Prototypical alpha Cygni Variable and A-type Supergiant Star Deneb
Deneb is often considered the prototypical A-type supergiant, and is one of
the visually most luminous stars in the Galaxy. A-type supergiants are
potential extragalactic distance indicators, but the variability of these stars
needs to be better characterized before this technique can be considered
reliable. We analyzed 339 high resolution echelle spectra of Deneb obtained
over the five-year span of 1997 through 2001 as well as 370 Stromgren
photometric measurements obtained during the same time frame. Our spectroscopic
analysis included dynamical spectra of the H-alpha profile, H-alpha equivalent
widths, and radial velocities measured from Si II 6347, 6371. Time-series
analysis reveals no obvious cyclic behavior that proceeds through multiple
observing seasons, although we found a suspected 40 day period in two,
non-consecutive observing seasons. Some correlations are found between
photometric and radial velocity data sets, and suggest radial pulsations at two
epochs. No correlation is found between the variability of the H-alpha profiles
and that of the radial velocities or the photometry. Lucy (1976) found evidence
that Deneb was a long period single-lined spectroscopic binary star, but our
data set shows no evidence for radial velocity variations caused by a binary
companion.Comment: 49 pages, 9 figures, 5 tables, accepted for publication in the
Astronomical Journa
Impact of neutron star oscillations on the accelerating electric field in the polar cap of pulsar: or could we see oscillations of the neutron star after the glitch in pulsar?
Pulsar "standard model", that considers a pulsar as a rotating magnetized
conducting sphere surrounded by plasma, is generalized to the case of
oscillating star. We developed an algorithm for calculation of the
Goldreich-Julian charge density for this case. We consider distortion of the
accelerating zone in the polar cap of pulsar by neutron star oscillations. It
is shown that for oscillation modes with high harmonic numbers (l,m) changes in
the Goldreich-Julian charge density caused by pulsations of neutron star could
lead to significant altering of an accelerating electric field in the polar cap
of pulsar. In the moderately optimistic scenario, that assumes excitation of
the neutron star oscillations by glitches, it could be possible to detect
altering of the pulsar radioemission due to modulation of the accelerating
field.Comment: 7 pages, 8 figures. Presented at the conference "Isolated Neutron
Stars: from the Interior to the Surface", London, April 24-28, 2006; to
appear in Astrophysics and Space Scienc
Oscillations of rapidly rotating relativistic stars
Non-axisymmetric oscillations of rapidly rotating relativistic stars are
studied using the Cowling approximation. The oscillation spectra have been
estimated by Fourier transforming the evolution equations describing the
perturbations. This is the first study of its kind and provides information on
the effect of fast rotation on the oscillation spectra while it offers the
possibility in studying the complete problem by including spacetime
perturbations. Our study includes both axisymmetric and non-axisymmetric
perturbations and provides limits for the onset of the secular bar mode
rotational instability. We also present approximate formulae for the dependence
of the oscillation spectrum from rotation. The results suggest that it is
possible to extract the relativistic star's parameters from the observed
gravitational wave spectrum.Comment: this article will be published in Physical Review
Numerical simulations of the kappa-mechanism with convection
A strong coupling between convection and pulsations is known to play a major
role in the disappearance of unstable modes close to the red edge of the
classical Cepheid instability strip. As mean-field models of time-dependent
convection rely on weakly-constrained parameters, we tackle this problem by the
means of 2-D Direct Numerical Simulations (DNS) of kappa-mechanism with
convection.
Using a linear stability analysis, we first determine the physical conditions
favourable to the kappa-mechanism to occur inside a purely-radiative layer.
Both the instability strips and the nonlinear saturation of unstable modes are
then confirmed by the corresponding DNS. We next present the new simulations
with convection, where a convective zone and the driving region overlap. The
coupling between the convective motions and acoustic modes is then addressed by
using projections onto an acoustic subspace.Comment: 5 pages, 6 figures, accepted for publication in Astrophysics and
Space Science, HELAS workshop (Rome june 2009
Asteroseismic Theory of Rapidly Oscillating Ap Stars
This paper reviews some of the important advances made over the last decade
concerning theory of roAp stars.Comment: 9 pages, 5 figure
A circular polarimeter for the Cosmic Microwave Background
A primordial degree of circular polarization of the Cosmic Microwave
Background is not observationally excluded. The hypothesis of primordial
dichroism can be quantitatively falsified if the plasma is magnetized prior to
photon decoupling since the initial V-mode polarization affects the evolution
of the temperature fluctuations as well as the equations for the linear
polarization. The observed values of the temperature and polarization angular
power spectra are used to infer constraints on the amplitude and on the
spectral slope of the primordial V-mode. Prior to photon decoupling magnetic
fields play the role of polarimeters insofar as they unveil the circular
dichroism by coupling the V-mode power spectrum to the remaining brightness
perturbations. Conversely, for angular scales ranging between 4 deg and 10 deg
the joined bounds on the magnitude of circular polarization and on the magnetic
field intensity suggest that direct limits on the V-mode power spectrum in the
range of 0.01 mK could directly rule out pre-decoupling magnetic fields in the
range of 10-100 nG. The frequency dependence of the signal is located, for the
present purposes, in the GHz range.Comment: 28 pages, 12 included figures
Hemodynamic Assessment of Celiaco-mesenteric Anastomosis in Patients with Pancreaticoduodenal Artery Aneurysm Concomitant with Celiac Artery Occlusion using Flow-sensitive Four-dimensional Magnetic Resonance Imaging
ObjectivesMany pancreaticoduodenal artery (PDA) aneurysms are associated with celiac artery (CA) stenosis. The pathogenesis of PDA aneurysm may be associated with hemodynamic changes due to CA stenosis/occlusion. The aim of this study was to assess the hemodynamic changes of celiaco-mesenteric anastomosis in patients with PDA aneurysms concomitant with CA occlusion using four-dimensional flow-sensitive magnetic resonance imaging (4D-Flow).Methods4D-Flow was performed preoperatively on five patients. Seven age- and sex-matched individuals were used as controls. Hemodynamic parameters such as flow volume and maximum flow velocity in PDAs, gastroduodenal arteries, common hepatic arteries, and superior mesenteric arteries were compared between both groups. Wall shear stress (WSS) and oscillatory shear index (OSI) were mapped in both groups.ResultsIn the patient group, 4D-Flow identified retrograde flow of both gastroduodenal arteries and common hepatic arteries. Heterogeneous distribution patterns of both WSS and OSI were identified across the entire PDA in the patient group. OSI mapping showed multiple regions with extremely high OSI values (OSI > 0.3) in all patients. All PDA aneurysms, which were surgically resected, were atherosclerotic.Conclusions4D-Flow identified hemodynamic changes in celiaco-mesenteric arteries in patients with PDA aneurysms with concomitant CA occlusion. These hemodynamic changes may be associated with PDA aneurysm formation
A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory
We describe an asymptotic procedure for deriving continuum equations from the
kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of
Enskog, we expand in the mean flight time of the constituent particles of the
gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae
at each order by using results from previous orders. In this way, we are able
to derive a new set of fluid dynamical equations from kinetic theory, as we
illustrate here for the relaxation model for monatomic gases. We obtain a
stress tensor that contains a dynamical pressure term (or bulk viscosity) that
is process-dependent and our heat current depends on the gradients of both
temperature and density. On account of these features, the equations apply to a
greater range of Knudsen number (the ratio of mean free path to macroscopic
scale) than do the Navier-Stokes equations, as we see in the accompanying
paper. In the limit of vanishing Knudsen number, our equations reduce to the
usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page
- …