1,526 research outputs found

    Universality in the Gravitational Stretching of Clocks, Waves and Quantum States

    Full text link
    There are discernible and fundamental differences between clocks, waves and physical states in classical physics. These fundamental concepts find a common expression in the context of quantum physics in gravitational fields; matter and light waves, quantum states and oscillator clocks become quantum synonymous through the Planck-Einstein-de Broglie relations and the equivalence principle. With this insight, gravitational effects on quantum systems can be simply and accurately analyzed. Apart from providing a transparent framework for conceptual and quantitative thinking on matter waves and quantum states in a gravitational field, we address and resolve with clarity the recent controversial discussions on the important issue of the relation and the crucial difference between gravimetery using atom interferometers and the measurement of gravitational time dilation.Comment: Gravity Research Foundation honorable mention, 201

    Correlation functions, Bell's inequalities and the fundamental conservation laws

    Full text link
    I derive the correlation function for a general theory of two-valued spin variables that satisfy the fundamental conservation law of angular momentum. The unique theory-independent correlation function is identical to the quantum mechanical correlation function. I prove that any theory of correlations of such discrete variables satisfying the fundamental conservation law of angular momentum violates the Bell's inequalities. Taken together with the Bell's theorem, this result has far reaching implications. No theory satisfying Einstein locality, reality in the EPR-Bell sense, and the validity of the conservation law can be constructed. Therefore, all local hidden variable theories are incompatible with fundamental symmetries and conservation laws. Bell's inequalities can be obeyed only by violating a conservation law. The implications for experiments on Bell's inequalities are obvious. The result provides new insight regarding entanglement, and its measures.Comment: LaTeX, 12pt, 11 pages, 2 figure

    Moving Observers in an Isotropic Universe

    Get PDF
    We show how the anisotropy resulting from the motion of an observer in an isotropic universe may be determined by measurements. This provides a means to identify inertial frames, yielding a simple resolution to the twins paradox of relativity theory. We propose that isotropy is a requirement for a frame to be inertial; this makes it possible to relate motion to the large scale structure of the universe.Comment: 8 pages, 1 figure, with minor typographical correctio

    Transition region of TEC enhancement phenomena during geomagnetically disturbed periods at mid-latitudes

    Get PDF
    Large-scale TEC perturbations/enhancements observed during the day sectors of major storm periods, 12-13 February 2000, 23 September 1999, 29 October 2003, and 21 November 2003, were studied using a high resolution GPS network over Japan. TEC enhancements described in the present study have large magnitudes (≥25×10<sup>16</sup> electrons/m<sup>2</sup>) compared to the quiet-time values and long periods (≥120 min). The sequential manner of development and the propagation of these perturbations show that they are initiated at the northern region and propagate towards the southern region of Japan, with velocities >350 m/s. On 12 February 2000, remarkably high values of TEC and background content are observed at the southern region, compared to the north, because of the poleward expansion of the equatorial anomaly crest, which is characterized by strong latitudinal gradients near 35° N (26° N geomagnetically). When the TEC enhancements, initiating at the north, propagate through the region 39-34° N (30-25° N geomagnetically), they undergo transitions characterized by a severe decrease in amplitude of TEC enhancements. This may be due to their interaction with the higher background content of the expanded anomaly crest. However, at the low-latitude region, below 34° N, an increase in TEC is manifested as an enhanced ionization pattern (EIP). This could be due to the prompt penetration of the eastward electric field, which is evident from high values of the southward Interplanetary Magnetic Field component (IMF <i>B<sub>z</sub></i>) and AE index. The TEC perturbations observed on the other storm days also exhibit similar transitions, characterized by a decreasing magnitude of the perturbation component, at the region around 39-34° N. In addition to this, on the other storm days, at the low-latitude region, below 34° N, an increase in TEC (EIP feature) also indicates the repeatability of the above scenario. It is found that, the latitude and time at which the decrease in magnitude of the perturbation component/amplitude of the TEC enhancement are matching with the latitude and time of the appearance of the high background content. In the present study, on 12 February 2000, the F-layer height increases at Wakkanai and Kokubunji, by exhibiting a typical dispersion feature of LSTID, or passage of an equatorward surge, which is matching with the time of occurrence of the propagating TEC perturbation component. Similarly, on 29 October 2003, the increase in F-layer heights by more than 150km at Wakkanai and 90 km at Kokubunji around 18:00 JST, indicates the role of the equatorward neutral wind. On that day, TEC perturbation observed at the northern region, after 18:30 JST, which propagates towards south, could be caused mainly by the equatorward neutral wind, leading to an F-layer height increase. These observations imply the role of the equatorward neutral wind, which increases the F-layer height, by lifting the ionization to the regions of lower loss during daytime, when production is still taking place, which, in turn, increases the TEC values. <P style="line-height: 20px;"> Large-scale traveling ionospheric disturbances (LSTIDs) are considered as ionospheric manifestations of the passage of Atmospheric Gravity Waves (AGWs) that are generated at the high latitude by energy input from the magnetosphere to the low-latitude ionosphere. This study shows that large-scale TEC perturbations observed here are produced at the northern region due to the combined effects of the equatorward neutral wind, the subsequent F-layer height increase, and LSTIDs. When these perturbation components propagate through the region, 39-34° N, they undergo transitions characterised by a decrease in magnitude. Also, at the low-latitude region, below 34° N, an increase in the TEC exhibits EIP feature, due to the prompt penetration of the eastward electric field

    Large-scale processes in the upper layers of the Indian Ocean inferred from temperature climatology

    Get PDF
    Determination of amplitudes and phases for the annual and semi-annual cycle of the temperature in the Indian Ocean north of 20S from Levitus temperature climatology (1982) gives maximum amplitudes of the seasonal cycle at 100 m with the dominance of semi-annual cycle in the equatorial region and annual cycle elsewhere in the domain. The Bay of Bengal shows characteristics of the westward-propagating Rossby waves of annual period, while the Arabian Sea shows the dominance of Ekman pumping in the central region and westward-propagating features in the eastern region. Qualitative evidences obtained from the distribution of depth of 20°C isotherm and computed Ekman pumping velocities are consistent with the above inferences. From the time-longitude plot of the depth of the 20°C isotherm, the phase speed of westward propagating features from the west coast of India along 10.5N and 15.5N are found to be 7.8 cm s−1 and 5.2 cm s−1 respectively. This is consistent with the corresponding values computed and verified with theory for the Bay of Bengal (Prasanna Kumar and Unnikrishnan, 1995)

    Entropic uncertainty relation for power-law wave packets

    Full text link
    For the power-law quantum wave packet in configuration space, the variance of the position observable may be divergent. Accordingly, the information-entropic formulation of the uncertainty principle becomes more appropriate than the Heisenberg-type formulation, since it involves only the finite quantities. It is found that the total amount of entropic uncertainty converges to its lower bound in the limit of a large value of the exponent.Comment: 10 pages, 3 figure

    A scientific research study on the management of Manyasthamba (Cervical Spondylosis) with Nasya and Nasapana

    Get PDF
    The science of life Ayurveda, not only deals with the prevention of diseases by maintaining health but also with the alleviation of diseases. In this ultra modern era due to change in lifestyles, sedentary works and food habits, people are unable to follow the Dinacharya and Ritucharya as explained in the classics, which may lead to different diseases. Due to improper postural habits, weight bearing and other unwholesome diets and habits there are higher the chances of discomfort and disease pertaining to spinal cord. Manyasthambha is one such condition that disturbs a big population due to today’s alterations in lifestyle. Here an effort is made to study and understand the role of Nasya Karma, Nasaapana and Shamanaushadhi like Vyoshadi Guggulu in the treatment aspect of this disease. Nasya Karma and Nasaapana provided highly significant results in all the symptoms of Manyasthambha. As per the clinical data, ‘Nasaapana is found to be more effective than Nasya Karma’. So it can be concluded that better results can be obtained with Shaddharana Yoga as Amapachana, Nasaapana with Mashabaladi Kwatha followed by Vyoshadi Guggulu as Shamanoushadhi

    Penning collisions of laser-cooled metastable helium atoms

    Full text link
    We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient β\beta on the excited state (23P22^3P_2) and metastable state (23S12^3S_1) populations is also investigated. From these results we infer a rather uniform rate constant Ksp=(1±0.4)×107K_{sp}=(1{\pm}0.4)\times10^{-7} cm3^3/s.Comment: 8 pages, 9 figures, Revte

    ASSESSMENT OF CORRELATION IN GENDER AND AGE WITH LIPOPROTEIN LEVELS IN HYPERLIPIDEMIA PATIENTS

    Get PDF
    ABSTRACTObjective: The main objective of the study was to monitor and compare the correlation between the age and gender with the serum lipoprotein levelsin the hyperlipidemia patients.Methods: The entire study was performed only after getting approval from the Institutional Ethics Committee. This is a prospective observationalstudy and conducted in Department of Cardiology of a tertiary care teaching hospital. A total of 520 patients were included and the data collected bydata entry form, and the results were thoroughly analyzed using various statistical tools for its relevance and significance.Results: From the total study population (n=520), the majority was males 271 (52.1%) than the female population 249 (47.9%). The minimum agein the study population identified was 40 (years) and the maximum age was 89 (years). The average age of the study population was found to be60.94±13.062 (years). The mean averages of total cholesterol in males 217.48±39.33 mg/dL compared to females 231.05±55.05 mg/dL, triglyceridesin males were 209.01±73.08 mg/dL compared to females 235.71±97.16 mg/dL, low-density lipoproteins in males were 156.42±37.02 mg/dLcompared to females 164.19±43.17 mg/dL, and in case of high-density lipoproteins it was 32.61±6.34 mg/dL compared to females 31.48±6.53 mg/dL.Conclusion: From the entire study, it was concluded that the prevalence rate is a more common in male population. The incidence rate is too high inyounger age population. The correlation of age and gender is directly proportional to the incidence of hyperlipidemia.Keywords: Hyperlipidemia, Cardiology, Gender, Age
    corecore