21 research outputs found

    RG inspired Machine Learning for lattice field theory

    Full text link
    Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use Renormalization Group (RG) ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA) and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference and have been improved after. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reduction of the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.Comment: Talk given by Yannick Meurice at the conference Lattice 2017, Granada, Spai

    Quantum mean estimation for lattice field theory

    Full text link
    We demonstrate the quantum mean estimation algorithm on Euclidean lattice field theories. This shows a quadratic advantage over Monte Carlo methods which persists even in presence of a sign problem, and is insensitive to critical slowing down. The algorithm is used to compute π\pi with and without a sign problem, a toy U(1) gauge theory model, and the Ising model. The effect of RZR_{Z}-gate synthesis errors on a future fault-tolerant quantum computer is investigated.Comment: 14 pages, 18 figure

    Estimating the central charge from the R\'enyi entanglement entropy

    Full text link
    We calculate the von Neumann and R\'enyi bipartite entanglement entropy of the O(2)O(2) model with a chemical potential on a 1+1 dimensional Euclidean lattice with open and periodic boundary conditions. We show that the Calabrese-Cardy conformal field theory predictions for the leading logarithmic scaling with the spatial size of these entropies are consistent with a central charge c=1c=1. This scaling survives the time continuum limit and truncations of the microscopic degrees of freedom, modifications which allow us to connect the Lagrangian formulation to quantum Hamiltonians. At half-filling, the forms of the subleading corrections imposed by conformal field theory allow the determination of the central charge with an accuracy better than two percent for moderately sized lattices. We briefly discuss the possibility of estimating the central charge using quantum simulators.Comment: 10 pages, 8 figures, 3 table

    Quantum simulation of the universal features of the Polyakov loop

    Full text link
    Lattice gauge theories are fundamental to our understanding of high-energy physics. Nevertheless, the search for suitable platforms for their quantum simulation has proven difficult. We show that the Abelian Higgs model in 1+1 dimensions is a prime candidate for an experimental quantum simulation of a lattice gauge theory. To this end, we use a discrete tensor reformulation to smoothly connect the space-time isotropic version used in most numerical lattice simulations to the continuous-time limit corresponding to the Hamiltonian formulation. The eigenstates of the Hamiltonian are neutral for periodic boundary conditions, but we probe the nonzero charge sectors by either introducing a Polyakov loop or an external electric field. In both cases we obtain universal functions relating the mass gap, the gauge coupling, and the spatial size which are invariant under the deformation of the temporal lattice spacing. We propose to use a physical multi-leg ladder of atoms trapped in optical lattices and interacting with Rydberg-dressed interactions to quantum simulate the model and check the universal features. Our results provide a path to the analog quantum simulation of lattice gauge theories with atoms in optical lattices.Comment: 9 pages, 6 figures, experimental content, supplementary material and coauthor (JZ) adde

    Progress towards quantum simulating the classical O(2) model

    Full text link
    We connect explicitly the classical O(2)O(2) model in 1+1 dimensions, a model sharing important features with U(1)U(1) lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization group formulation, we take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a 87^{87}Rb and 41^{41}K Bose-Bose mixture.Comment: 7 pages, 6 figures, uses revtex, new material and one author added, as to appear in Phys. Rev.

    Probing the conformal Calabrese-Cardy scaling with cold atoms

    No full text

    Probing the conformal Calabrese-Cardy scaling with cold atoms

    No full text
    We demonstrate that current experiments using cold bosonic atoms trapped in one-dimensional optical lattices and designed to measure the second-order Rényi entanglement entropy S2 can be used to verify detailed predictions of conformal field theory (CFT) and estimate the central charge c. We discuss the adiabatic preparation of the ground state at half filling and small hopping parameter J/U, where we expect a CFT with c=1. We provide two complementary methods to estimate and subtract the classical entropy generated by the experimental preparation and imaging processes. We compare numerical calculations for the classical O(2) model with a chemical potential on a (1+1)-dimensional lattice, and the quantum Bose-Hubbard Hamiltonian implemented in the experiments. S2 is very similar for the two models and follows closely the Calabrese-Cardy scaling, (c/8)ln(Ns), for Ns sites with open boundary conditions, provided that the large subleading corrections are taken into account
    corecore