7,992 research outputs found
Refraction of shear zones in granular materials
We study strain localization in slow shear flow focusing on layered granular
materials. A heretofore unknown effect is presented here. We show that shear
zones are refracted at material interfaces in analogy with refraction of light
beams in optics. This phenomenon can be obtained as a consequence of a recent
variational model of shear zones. The predictions of the model are tested and
confirmed by 3D discrete element simulations. We found that shear zones follow
Snell's law of light refraction.Comment: 4 pages, 3 figures, minor changes, jounal ref. adde
Models relating the radio emission and ionised gas in Seyfert nuclei
Possible models are discussed in which the radio emitting components in Seyfert II nuclei can compress and accelerate the ambient nuclear medium to produce the characteristics of the narrow line region. A first order model, which considers only the expansion of the radio components, is briefly described. However, in many Seyfert nuclei it appears that the linear motion of the radio components is also important. This can result in shock heating of the ambient medium, and if the cooling time is long enough, can lead to a displacement between the radio component and the associated emission lines. This effect may be present in NGC 1068 and NGC 5929 and by considering ram pressure balance and the cooling length it is possible to estimate lobe velocities and ambient densities
The morphology of Sersic-Pastoriza galaxies
The authors present the preliminary results of their radio-continuum and neutral hydrogen observations of Sersic-Pastoriza (S-P) galaxies. They show that the central regions contain a population of compact features thought to be young supernova remnants (SNRs) and discuss the overall morphology of the nuclei
Processing and Transmission of Information
Contains reports on two research projects.Lincoln Laboratory, Purchase Order DDL-B158Department of the ArmyDepartment of the NavyDepartment of the Air Force under Contract AF 19(122)-45
Diagnostic Ultrasound Induced Inertial Cavitation To Non-Invasively Restore Coronary And Microvascular Flow In Acute Myocardial Infarction
Ultrasound induced cavitation has been explored as a method of dissolving intravascular and microvascular thrombi in acute myocardial infarction. The purpose of this study was to determine the type of cavitation required for success, and whether longer pulse duration therapeutic impulses (sustaining the duration of cavitation) could restore both microvascular and epicardial flow with this technique. Accordingly, in 36 hyperlipidemic atherosclerotic pigs, thrombotic occlusions were induced in the mid-left anterior descending artery. Pigs were then randomized to either a) 1/2 dose tissue plasminogen activator (0.5 mg/kg) alone; or same dose plasminogen activator and an intravenous microbubble infusion with either b) guided high mechanical index short pulse (2.0 MI; 5 usec) therapeutic ultrasound impulses; or c) guided 1.0 mechanical index long pulse (20 usec) impulses. Passive cavitation detectors indicated the high mechanical index impulses (both long and short pulse duration) induced inertial cavitation within the microvasculature. Epicardial recanalization rates following randomized treatments were highest in pigs treated with the long pulse duration therapeutic impulses (83% versus 59% for short pulse, and 49% for tissue plasminogen activator alone; p \u3c 0.05). Even without epicardial recanalization, however, early microvascular recovery occurred with both short and long pulse therapeutic impulses (p \u3c 0.005 compared to tissue plasminogen activator alone), and wall thickening improved within the risk area only in pigs treated with ultrasound and microbubbles. We conclude that although short pulse duration guided therapeutic impulses from a diagnostic transducer transiently improve microvascular flow, long pulse duration therapeutic impulses produce sustained epicardial and microvascular re-flow in acute myocardial infarction
A Dense Gas Trigger for OH Megamasers
HCN and CO line diagnostics provide new insight into the OH megamaser (OHM)
phenomenon, suggesting a dense gas trigger for OHMs. We identify three physical
properties that differentiate OHM hosts from other starburst galaxies: (1) OHMs
have the highest mean molecular gas densities among starburst galaxies; nearly
all OHM hosts have = 10^3-10^4 cm^-3 (OH line-emitting clouds likely
have n(H2) > 10^4 cm^-3). (2) OHM hosts are a distinct population in the
nonlinear part of the IR-CO relation. (3) OHM hosts have exceptionally high
dense molecular gas fractions, L(HCN)/L(CO)>0.07, and comprise roughly half of
this unusual population. OH absorbers and kilomasers generally follow the
linear IR-CO relation and are uniformly distributed in dense gas fraction and
L(HCN), demonstrating that OHMs are independent of OH abundance. The fraction
of non-OHMs with high mean densities and high dense gas fractions constrains
beaming to be a minor effect: OHM emission solid angle must exceed 2 pi
steradians. Contrary to conventional wisdom, IR luminosity does not dictate OHM
formation; both star formation and OHM activity are consequences of tidal
density enhancements accompanying galaxy interactions. The OHM fraction in
starbursts is likely due to the fraction of mergers experiencing a temporal
spike in tidally driven density enhancement. OHMs are thus signposts marking
the most intense, compact, and unusual modes of star formation in the local
universe. Future high redshift OHM surveys can now be interpreted in a star
formation and galaxy evolution context, indicating both the merging rate of
galaxies and the burst contribution to star formation.Comment: 5 pages, 3 figures, 1 table, accepted by ApJ Letter
Resonant continuum in the Hartree-Fock+BCS approximation
A method for incorporating the effect of the resonant continuum into
Hartree-Fock+BCS equations is proposed. The method is applied for the case of
a neutron-rich nucleus calculated with a Skyrme-type force plus a zero-range
pairing interaction and the results are compared with
Hartree-Fock-Bogoliubov calculations. It is shown that the widths of resonant
states have an important effect on the pairing properties of nuclei close to
the drip line.Comment: 9 pages, 2 figures, comparison with HFB adde
Sub 20 nm Short Channel Carbon Nanotube Transistors
Carbon nanotube field-effect transistors with sub 20 nm long channels and
on/off current ratios of > 1000000 are demonstrated. Individual single-walled
carbon nanotubes with diameters ranging from 0.7 nm to 1.1 nm grown from
structured catalytic islands using chemical vapor deposition at 700 degree
Celsius form the channels. Electron beam lithography and a combination of HSQ,
calix[6]arene and PMMA e-beam resists were used to structure the short channels
and source and drain regions. The nanotube transistors display on-currents in
excess of 15 microA for drain-source biases of only 0.4 Volt.Comment: Nano Letters in pres
- …