78 research outputs found

    Energy Balances for Axisymmetric Gravity Currents in Homogeneous and Linearly Stratified Ambients

    Get PDF
    We analyse the exchange of energy for an axisymmetric gravity current, released instantaneously from a lock, propagating over a horizontal boundary at high Reynolds number. The study is relevant to flow in either a wedge or a full circular geometry. Attention is focused on effects due to a linear stratification in the ambient. The investigation uses both a one-layer shallow-water model and Navier–Stokes finite-difference simulations. There is fair agreement between these two approaches for the energy changes of the dense fluid (the current). The stratification enhances the accumulation of potential energy in the ambient and reduces the energy decay (dissipation) of the two-fluid system. The total energy of the axisymmetric current decays considerably faster with distance of propagation than for the two-dimensional counterpart

    Sustained gravity currents in a channel

    Get PDF
    Gravitationally driven motion arising from a sustained constant source of dense fluid in a horizontal channel is investigated theoretically using shallow-layer models and direct numerical simulations of the Navier–Stokes equations, coupled to an advection–diffusion model of the density field. The influxed dense fluid forms a flowing layer underneath the less dense fluid, which initially filled the channel, and in this study its speed of propagation is calculated; the outflux is at the end of the channel. The motion, under the assumption of hydrostatic balance, is modelled using a two-layer shallow-water model to account for the flow of both the dense and the overlying less dense fluids. When the relative density difference between the fluids is small (the Boussinesq regime), the governing shallow-layer equations are solved using analytical techniques. It is demonstrated that a variety of flow-field patterns are feasible, including those with constant height along the length of the current and those where the height varies continuously and discontinuously. The type of solution realised in any scenario is determined by the magnitude of the dimensionless flux issuing from the source and the source Froude number. Two important phenomena may occur: the flow may be choked, whereby the excess velocity due to the density difference is bounded and the height of the current may not exceed a determined maximum value, and it is also possible for the dense fluid to completely displace all of the less dense fluid originally in the channel in an expanding region close to the source. The onset and subsequent evolution of these types of motions are also calculated using analytical techniques. The same range of phenomena occurs for non-Boussinesq flows; in this scenario, the solutions of the model are calculated numerically. The results of direct numerical simulations of the Navier–Stokes equations are also reported for unsteady two-dimensional flows in which there is an inflow of dense fluid at one end of the channel and an outflow at the other end. These simulations reveal the detailed mechanics of the motion and the bulk properties are compared with the predictions of the shallow-layer model to demonstrate good agreement between the two modelling strategies.</jats:p

    Experimental verification of theoretical approaches for radial gravity currents draining from an edge

    Get PDF
    We present an experimental study of inertial gravity currents (GCs) propagating in a cylindrical wedge under different drainage directions (inward/outward), lock-release (full/partial gatewidth) and geometry (annulus/full cylinder). We investigate the following combinations representative of operational conditions for dam-break flows: (i) inward drainage, annular reservoir, full gate; (ii) outward drainage, full reservoir, full gate; and (iii) outward drainage, full reservoir, partial gate. A single-layer shallow-water (SW) model is used for modelling the first two cases, while a box model interprets the third case; the results of these approximations are referred to as "theoretical". We performed a first series of experiments with water as ambient fluid and brine as intruding fluid, measuring the time evolution of the volume in the reservoir and the velocity profiles in several sections; in a second series, airwas the ambient andwaterwas the intruding fluid. Careful measurements, accompanied by comparisons with the theoretical predictions, were performed for the behaviour of the interface, radial velocity and, most important, the volume decay V(t)/V(0). In general, there is good agreement: the theoretical volume decay is more rapid than the measured one, but the discrepancies are a few percent and the agreement improves as the Reynolds number increases. Velocity measurements show a trend correctly reproduced by the SWmodel, although often a delay is observed and an over- or under-estimation of the peak values. Some experiments were conducted to verify the role of inconsistencies between experimental set-up and model assumptions, considering, for example, the presence or absence of a top lid, wedge angle much less than 2p, suppression of the viscous corner at the centre, reduction of disturbances in the dynamics of the ambient fluid: all these effects resulted in negligible impacts on the overall error. These experiments provide corroboration to the simple models used for capturing radial drainage flows, and also elucidate some effects (like oscillations of the radial flux) that are beyond the resolution of the models. This holds also for partial width lock-release, where axial symmetry is lost

    Experimental verification of theoretical approaches for radial gravity currents draining from an edge

    Get PDF
    We present an experimental study of inertial gravity currents (GCs) propagating in a cylindrical wedge under different drainage directions (inward/outward), lock-release (full/partial gate width) and geometry (annulus/full cylinder). We investigate the following combinations representative of operational conditions for dam-break flows: (i) inward drainage, annular reservoir, full gate; (ii) outward drainage, full reservoir, full gate; and (iii) outward drainage, full reservoir, partial gate. A single-layer shallow-water (SW) model is used for modelling the first two cases, while a box model interprets the third case; the results of these approximations are referred to as “theoretical”. We performed a first series of experiments with water as ambient fluid and brine as intruding fluid, measuring the time evolution of the volume in the reservoir and the velocity profiles in several sections; in a second series, air was the ambient and water was the intruding fluid. Careful measurements, accompanied by comparisons with the theoretical predictions, were performed for the behaviour of the interface, radial velocity and, most important, the volume decay V(t) / V(0). In general, there is good agreement: the theoretical volume decay is more rapid than the measured one, but the discrepancies are a few percent and the agreement improves as the Reynolds number increases. Velocity measurements show a trend correctly reproduced by the SW model, although often a delay is observed and an over- or under-estimation of the peak values. Some experiments were conducted to verify the role of inconsistencies between experimental set-up and model assumptions, considering, for example, the presence or absence of a top lid, wedge angle much less than 2 π, suppression of the viscous corner at the centre, reduction of disturbances in the dynamics of the ambient fluid: all these effects resulted in negligible impacts on the overall error. These experiments provide corroboration to the simple models used for capturing radial drainage flows, and also elucidate some effects (like oscillations of the radial flux) that are beyond the resolution of the models. This holds also for partial width lock-release, where axial symmetry is lost

    The propagation of gravity currents in a circular cross-section channel: experiments and theory

    Get PDF
    High-Reynolds number gravity currents (GC) in a horizontal channel with circular/semicircular side walls are investigated by comparing experimental data and shallow-water (SW) theoretical results. We focus attention on a Boussinesq system (salt water in fresh water): the denser fluid, occupying part of the depth or the full depth of the ambient fluid which fills the remaining part of the channel, is initially at rest in a lock separated by a gate from the downstream channel. Upon the rapid removal of the gate (‘dam break’), the denser ‘current’ begins propagating into the downstream channel, while a significant adjustment motion propagates upstream in the lock as a bore or rarefaction wave. Using an experimental channel provided by a tube of 19 cm diameter and up to 615 cm length, which could be filled to various levels, we investigated both full-depth and part-depth releases, considered the various stages of inertial-buoyancy propagation (in particular, the initial ‘slumping’ with constant speed, and the transition to the late self-similar propagation with time to the power 3=4), and detected the transition to the viscous-buoyancy regime. A first series of tests is focused on the motion in the lock while a second series of tests is focused on the evolution of the downstream current. The speed of propagation of the current in the slumping stage is overpredicted by the theory, by about the same amount (typically 15 %) as observed in the classical flat bottom case. The length of transition to viscous regime turns out to be TRe0.h0=x0/U (Re0 D .g0h0/1=2h0= c is the initial Reynolds number, g0 is the reduced gravity, c is the kinematic viscosity of the denser fluid, h0 and x0 are the height of the denser current and the length of the lock, respectively), with the theoretical D3=8 and experimental 0:27

    On the propagation of a two-dimensional viscous density current under surface waves

    Get PDF
    This study aims to develop an asymptotic theory for the slow spreading of a thin layer of viscous immiscible dense liquid on the bottom of a waterway under the combined effects of surface waves and density current. By virtue of the sharply different length and time scales (wave periodic excitation being effective at fast scales, while gravity and streaming currents at slow scales), a multiple-scale perturbation analysis is conducted. Evolution equations are deduced for the local and global profile distributions of the dense liquid layer as functions of the slow-time variables. When reflected waves are present, the balance between gravity and streaming will result, on a time scale one order of magnitude longer than the wave period, in an undulating water/liquid interface whose displacement amplitude is much smaller than the thickness of the dense liquid layer. On the global scale, the streaming current can predominate and drive the dense liquid to propagate with a distinct pattern in the direction of the surface waves. Š 2002 American Institute of Physics.published_or_final_versio
    • …
    corecore