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Abstract

Gravity currents with various contrasting densities play a role in mass transport in a number of geophysical situations.
The ratio of the density of the current, ρc, to the density of the ambient fluid, ρa, can vary between 100 and 103. In this
paper, we present a numerical method of simulating gravity currents for a wide range of ρc/ρa using a shallow-water
model. In the model, the effects of varying ρc/ρa are taken into account via the front condition (i.e., factors describing
the balance between the driving pressure and the ambient resistance pressure at the flow front). Previously, two types
of numerical models have been proposed to solve the front condition. These are referred to here as the Boundary
Condition (BC) model and the Artificial Bed (AB) model. The front condition is calculated as a boundary condition at
each time step in the BC model, whereas it is calculated by setting a thin artificial bed ahead of the front in the AB
model. We assessed the BC and AB models by comparing their numerical results with the analytical results for a simple
case of homogeneous currents. The results from the BCmodel agree well with the analytical results when ρc/ρa � 102,
but the model tends to overestimate the speed of the front position when ρc/ρa � 102. In contrast, the AB model
generates good approximations of the analytical results for ρc/ρa � 102, given a sufficiently small artificial bed
thickness, but fails to reproduce the analytical results when ρc/ρa � 102. Therefore, we propose a numerical method
in which the BC model is used for currents with ρc/ρa � 102 and the AB model is used for currents with ρc/ρa � 102.
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Introduction
Gravity currents are flows driven by density differences
between the current and the ambient fluid. In geophysical
settings, there are many types of high-Reynolds-number
(typically � 103) gravity currents that show a wide range
of density ratios (ρc/ρa, where ρc and ρa are the densi-
ties of the current and ambient fluid, respectively), such
as debris flows (ρc/ρa ∼ 103; e.g., Iverson 1997), turbidity
currents (ρc/ρa ∼ 100; e.g., Meiburg and Kneller 2010),
and pyroclastic density currents (ρc/ρa = 100–101 in the
overlying parts and ρc/ρa = 102–103 in the underlying
parts; e.g., Branney and Kokelaar 2002; Breard et al. 2016;
Nield and Woods 2004). For the two extreme cases of
ρc/ρa ∼ 100 and 103, the fluid dynamical features of
gravity currents (e.g., the shape of the interface and the
propagation of the flow front) have been studied in detail
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using experimental investigations (e.g., Marino et al. 2005;
Martin and Moyce 1952; Dressler 1954; Rottman and
Simpson 1983), numerical investigations (e.g., Cantero
et al. 2007; Ooi et al. 2009), and theoretical modeling (e.g.,
Benjamin 1968; Hogg and Pritchard 2004; Huppert and
Simpson 1980; Stoker 1992; Ungarish and Zemach 2005).
For intermediate density ratios (100 < ρc/ρa < 103), there
have been some previous studies (e.g., Birman et al. 2005;
Bonometti et al. 2011; Gröbelbauer et al. 1993; Hallworth
and Huppert 1998; Härtel et al. 2000; Ungarish 2007), but
the dynamics of gravity currents within this density range
is less well understood than that of the extreme cases.
The purpose of this study is to develop a numer-

ical model of gravity currents for a wide range of
ρc/ρa based on a shallow-water model. The shallow-
water model is an efficient mathematical model that
captures the essential features of the vertically aver-
aged motion of gravity currents with free surfaces (see
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Ungarish 2009 for an extensive review). For simple ini-
tial and boundary conditions, analytical solutions of the
shallow-water model for propagating gravity currents are
available for a wide range of ρc/ρa (Ungarish 2007),
and these analytical solutions have been verified by
experimental measurements and direct numerical simu-
lations using the Navier–Stokes equation (Bonometti and
Balachandar 2010; Ungarish 2007). However, geophysical
conditions of interest generally have rather complex initial
and boundary conditions, so such analytical solutions are
not always available. A numerical model that is applica-
ble for complex initial and boundary conditions is highly
desirable for simulations of gravity currents for a wide
range of ρc/ρa.
This study is particularly concerned with a numerical

treatment of the flow front of gravity currents. In the fol-
lowing sections, we formulate the mathematical problem
and show that the numerical treatment at the flow front
is key to correctly solving the dynamics of gravity cur-
rents for a wide range of ρc/ρa within the framework of
the shallow-water model. We also assess previous numer-
ical methods that have been used to calculate the behavior
of the flow front by comparing numerical and analytical
results, and we propose a numerical method to simulate
the dynamics of gravity currents for a wide range of ρc/ρa
under various geophysical conditions. Finally, as a geo-
physical application of our results, we develop a numerical
model of a pyroclastic density current with strong density
stratification.

Methods
Formulation
We consider a planar, inviscid, incompressible, immisci-
ble gravity current of density ρc in a deep ambient fluid
of density ρa, as shown in Fig. 1. The current propagates
along a smooth horizontal bottom in the positive x∗ direc-
tion in time t∗, and gravitational acceleration g acts in the
negative z∗ direction, where asterisks denote dimensional
variables. The propagating current is initially stationary
in a reservoir of length x0 and height h0, and propagation

Fig. 1 Schematic of the gravity current released from a dam in a deep
ambient fluid

occurs after a dam at x∗ = x0 is rapidly removed at t∗ = 0.
The boundary at x∗ = 0 is a rigid wall. The flow front at
x∗ = x∗

N(t∗) is affected by the resistance of the ambient
fluid, where N denotes the front. This problem is referred
to as the “dam-break problem” (e.g., Ungarish 2009), and
is a simple geophysical scenario.
We assume that the current is shallow, with h0/x0 � 1,

and is in hydrostatic equilibrium in the vertical direction
(i.e., the shallow-water approximation). In the shallow-
water approximation, we can obtain the vertically aver-
aged conservation equations of mass and momentum for
the flow interior x∗ < x∗

N (e.g., Ungarish 2007) as follows:
∂h∗

∂t∗
+ ∂

∂x∗ (u∗h∗) = 0, (1)

∂

∂t∗
(u∗h∗) + ∂

∂x∗

(
u∗2h∗ + 1

2
ρc − ρa

ρc
gh∗2

)
= 0, (2)

where h(x, t) is the local height and u(x, t) is the local
horizontal velocity.
At the flow front x∗ = x∗

N(t∗), the kinematic condition
(dx∗

N/dt∗ = u∗
N) and the mass and momentum equations

should be taken into account. In addition, to describe
realistic gravity current dynamics, we must consider a
quasi-steady balance between the buoyancy pressure driv-
ing the current front (∼ (ρc − ρa)gh∗

N) and the resistance
pressure caused by the acceleration of the ambient fluid
around the front (∼ ρau∗2

N ). This condition is known as
the front condition, and can be written as follows (e.g.,
Ungarish 2007):

u∗
N = Fr

√
ρc − ρa

ρa
gh∗

N at x∗ = x∗
N(t∗), (3)

where Fr, which is an imposed frontal Froude num-
ber, is assumed to be a constant of order 100 (e.g.,

√
2;

Benjamin 1968).
Here, using x0 as the length scale and h0 as the height

scale, we rewrite all dimensional variables to dimension-
less variables as follows:

x = x∗/x0, h = h∗/h0, u = u∗/U , t = t∗/T , (4)

with

U =
√

ρc − ρa
ρc

gh0, T = x0/U . (5)

Applying this scaling to Eqs. (1)–(3), we obtain
∂

∂t
q + ∂

∂x
f = 0 (6)

uN = Fr
√

ρc/ρa
√
hN at x = xN(t) (7)

with

q =
(
h
uh

)
; f =

(
uh

u2h + 1
2h

2

)
. (8)

Note that the density ratio ρc/ρa is included only in the
front condition (7). Hence, to capture the effects of ρc/ρa,
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it is important to calculate the front condition correctly
(Ungarish 2007).
The behavior of the analytical solutions for the above

equations depends on ρc/ρa (Fig. 2; Ungarish 2007). The
analytical solutions of the dam-break problem consist of
an initial “slumping” stage and a subsequent “self-similar”
stage (Fig. 2a; e.g., Hogg 2006). During the slumping stage,
the front moves with a constant speed and height. Dur-
ing this stage, an initial backward-propagating rarefaction
wave arises from the rapidly removed dam, and then a
wave arises from the reflection of this rarefaction wave at
the back wall x = 0 at t = 1. The slumping stage con-
tinues until the front is caught by this reflection wave.
After the slumping stage, the solution is asymptotic to a
self-similar solution as time tends to infinity (i.e., the self-
similar stage). During this stage, the velocity and height of
the front decrease with time. The dependence of the solu-
tion on ρc/ρa is clearly observed in the behavior of the
flow front. When ρc/ρa ∼ 100, the front height hN is on
the order of 10−1 during the slumping stage and in the
early self-similar stage (Fig. 2a). On the other hand, when
ρc/ρa ∼ 103, hN is much smaller than 10−1, even from
the beginning, the front velocity uN is substantially greater
than uN for ρc/ρa ∼ 100 (Fig. 2b). These differences can
be interpreted as follows: the momentum lost due to the

resistance of the ambient fluid at the front becomes less
significant with respect to the momentum of the current
as ρc/ρa increases.We aim to numerically reproduce these
features of the analytical solution below.

Numerical methods
In this study, we developed a numerical method for
modeling gravity currents for a wide range of ρc/ρa by
discretizing the dimensionless mass and momentum con-
servation equations (Eqs. (6) and (8)). As these equations
are nonlinear and hyperbolic, shocks may develop in the
currents. Consequently, we used a finite volume method
with shock-capturing capability (e.g., LeVeque 2002;
Toro 2001). The finite volumemethod updates a piecewise
constant function Qn

i that approximates the average value
of the solution q in each grid cell i at time step n, using the
expression

Qn+1
i = Qn

i − �t
�x

(F i+1/2 − F i−1/2), (9)

where �x is the constant cell length and �t is the time
interval. F i+1/2, which is the intercell flux between cells i
and i+ 1, is obtained by using an exact Riemann solver or
an approximate Riemann solver, such as the Roe scheme
(e.g., LeVeque 2002; Toro 2001). The time interval �t is

Fig. 2 Analytical solutions of h(x, t) for the dam-break problem. Here, Fr = √
2 (Benjamin 1968) is used. a ρc/ρa = 1.01. b ρc/ρa = 1000. In (a), the

currents at t = 0.5, 1.0, 1.5, and 3.0 are in the slumping stage, and the current at t = 5.0 is in the self-similar stage. The initial backward-propagating
rarefaction wave arising from the rapidly removed dam travels toward the back wall x = 0 (see the profile at t = 0.5), reaching the wall at t = 1.0.
Then, a wave arises from the reflection of the rarefaction wave and travels toward the front (see the profiles at t = 1.5 and 3.0). After the front is
caught by this reflection wave, the current is in the self-similar stage (see the profile at t = 5.0). In (b), all the currents are in the slumping stage. In
this case (i.e., ρc/ρa = 1000), the slumping stage continues until t ∼ 226 (see Hogg 2006 for details)
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limited by the Courant–Friedrichs–Lewy condition (e.g.,
LeVeque 2002; Toro 2001).
As mentioned above, if we are to capture the effects of

ρc/ρa, it is important to calculate the front condition (7)
correctly. Previously, two types of numerical models have
been proposed to calculate the front condition. In one,
the front condition is calculated as a boundary condition
at each time step (e.g., Ungarish 2009). We refer to this
model as the Boundary Condition (BC) model (Fig. 3a).
In the other, the front condition is calculated by setting a
thin artificial bed ahead of the front (e.g., Toro 2001). We
refer to this as the Artificial Bed (AB) model (Fig. 3b). In
the AB model, the resistance of the ambient fluid at the
flow front is modeled by the reaction of the force pushing
the artificial bed at the flow front. These models will be
described below.

Boundary Condition (BC)model
In the BC model, three quantities at the flow front (xN,
hN, and uN) are calculated as boundary conditions of the
current from the three equations (mass and momentum
conservation equations and front condition) at each time
step. In the present numerical method, because we apply
a fixed spatial coordinate with constant �x, the front
position x = xN(t) generally does not coincide with the
margins of the grid cells. We therefore define the cell that
includes the front as the front cell (i = FC(t), where FC(t)
is an integer), and the width of the region that the current
occupies in the front cell as �xFC(t) (0 ≤ �xFC(t) < �x;
see Fig. 4). Using FC(t) and �xFC(t), we can write the
front position as

xN(t) = (FC(t) − 1)�x + �xFC(t). (10)

Fig. 3 Schematics of the numerical models used to calculate the front
condition. a Boundary Condition (BC) model. b Artificial Bed (AB)
model

The values of hN and uN are approximated by the values
of h and u at the front cell (i.e., hFC and uFC).
When the kinematic condition (dxN/dt = uN) is taken

into account, the discretized equations for mass and
momentum conservation at the flow front are given by

�xn+1
FC hn+1

FC = �xnFCh
n
FC + �tf1 (11)

and

�xn+1
FC (uh)n+1

FC = �xnFC(uh)nFC + �t
(
f2 − 1

2

(
hn+1
FC

)2)
,

(12)

respectively, where (f1, f2)T represents the intercell flux
FFC−1/2. From the front condition (i.e., Eq. (7)), we obtain

(uh)n+1
FC

hn+1
FC

= Fr
√

ρc/ρa

√
hn+1
FC . (13)

Solving these three equations analytically (e.g., using Fer-
rari’s method for the solution of the quartic equation)
or numerically (e.g., using the Newton–Raphson iteration
method), we obtain hn+1

FC , un+1
FC , and �xn+1

FC , and hence,
hN,uN, and xN at each time step.

Artificial Bed (AB)model
In the AB model, the conservation equations (Eqs. (6)
and (8)) are numerically solved using a shock-capturing
method for not only the interior, but also the outside of
the current by a priori setting a thin artificial bed ahead
of the front. Through this numerical procedure, the flow
front is generated as the flow following a shock formed
ahead of the front without any additional calculation (see
Fig. 3b). In this model, the thickness of the artificial bed
(ε in Fig. 3b) is the parameter that controls the front con-
dition (i.e., the values of hN and uN for different values of
ρc/ρa; see section 10.8 in Toro 2001).
Here, we analytically determined the relationship

between ε and ρc/ρa, as well as that between uN and ε, on
the basis of the analytical solution for the slumping stage
of the dam-break problem (e.g., LeVeque 2002; Toro 2001;
Ungarish 2009). The initial conditions are h = 1 and u = 0
in the domain 0 ≤ x ≤ 1, and h = ε and u = 0 in the
domain x > 1, at t = 0. Let us consider the time evolu-
tion of the current before the rarefaction wave reaches the
back wall x = 0 (i.e., 0 < t ≤ 1).
For hyperbolic equations such as those used in the

present system (i.e., Eqs. (6) and (8)), the relationships
between the variables (i.e., h and u) on the characteristics
c± = u ± √

h are represented as follows:

�± = u ± 2
√
h = const on

dx
dt

= c±, (14)

where �± are the “Riemann Invariants”. Considering that
c+ characteristics from the domain with one initial con-
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Fig. 4 Schematic of the computational domain of the BC model

dition (h = 1,u = 0) enter the front domain (h = hN,
u = uN), we can obtain

uN = 2
(
1 −

√
hN

)
(15)

from Eq. (14). The equation provides the relationship
between h = hN and u = uN inside the current.
On the other hand, when an artificial bed with h = ε and

u = 0 is set, a shock wave traveling with speed S occurs
ahead of the front. Across this shock wave, the Rankine–
Hugoniot condition,

f (qR) − f (qL) = S(qR − qL) (16)

should hold. Here, the subscript R denotes the state on the
right side of the shock and L denotes the state on the left
side. From Eq. (16), we obtain the state of the front domain
behind the shock (i.e., the relationship between h = hN
and u = uN) as

uN = (hN − ε)

√
1
2

(
hN + ε

hNε

)
, (17)

and the shock speed as

S =
√
1
2

(hN + ε)hN
ε

. (18)

Eliminating hN from Eqs. (15), (17), and (18), we obtain
uN and S as a function of ε (Fig. 5a). Using the front con-
dition (7) as well as these equations, we also obtain the
relationship between the artificial bed thickness ε and the
density ratio ρc/ρa (Fig. 5b) as
(
1 − 2

Fr
√

ρc/ρa + 2

)
4
√
2ε

Fr
√

ρc/ρa + 2

=
{(

2
Fr

√
ρc/ρa + 2

)2
− ε

} √(
2

Fr
√

ρc/ρa + 2

)2
+ ε.

(19)

Note that because we use Eq. (15) here, these relationships
(Fig. 5) are in the slumping stage.
In Fig. 5a, S is larger than the front velocity, uN, because

of the accumulation of the artificial bed at the flow front
(see Fig. 3b). This deviation of S from uN is substantial for

ε � 10−3. This implies that the position of the shock does
not always approximate the flow front. If we are to extract
the correct position of the flow front, we must calculate
an advection equation for a passive tracer concentration,
φ (φ = 1 for 0 ≤ x ≤ 1, and φ = 0 for x > 1, at t = 0):

∂φ

∂t
+ u

∂φ

∂x
= 0 (20)

after solving the equations of fluid motion (see section
13.12 in LeVeque 2002 for details).

Results and discussion
In this section, we compare the numerical results obtained
from the BC and AB models with the analytical results,
and assess the applicability of these models. Subsequently,
as a geophysical application of our results, we develop a
numerical model of pyroclastic density currents.

Fig. 5 Analytical solutions for the AB model during the slumping
stage. a Front velocity uN (red curve) and shock speed S (blue curve), as
functions of ε. b Relationship between ε and ρc/ρa, in which
Fr = √

2 (Benjamin 1968) is used. Dashed curves represent the
solutions for ρc/ρa < 1
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Comparison of analytical and numerical results
Figure 6 shows the numerical results from the BC model
along with the analytical results for the cases of ρc/ρa =
1.01 (a) and 1000 (b). The numerical results for ρc/ρa =
1.01 agree well with the analytical results from the early
slumping stage to the late self-similar stage. The numer-
ical results for ρc/ρa = 1000 also appear to agree with
the analytical results, but the speed of the front position,
ẋN, shows a numerical oscillation that is not observed in
the analytical result (Fig. 7a). In particular, in the initial
stage (t � 0.0002 in Fig. 7a), ẋN tends to be overesti-
mated. These oscillation and overestimation are caused
by the assumption that the values of hFC and uFC are
uniform across the width of the front cell �xFC in the
present numerical method at first-order accuracy. For a
large ρc/ρa, because hN has a small value, the value of
�xFC tends to be overestimated when a constant hFC
is assumed (Fig. 7b). We suggest, therefore, that the BC
model is favorable for simulating gravity currents with
relatively low ρc/ρa.
Figure 8 shows the numerical results from the ABmodel

along with the analytical results. In these calculations, the
values of ε for given values of ρc/ρa are set based on the
relationship of Eq. (19) (see Fig. 5b). In Fig. 8b, the numer-
ical results for ρc/ρa = 1000 (ε = 4.58 × 10−7) agree
well with the analytical results. The numerical oscilla-
tions observed in the BC model do not occur with the AB
model (Fig. 7a). In Fig. 8a, on the other hand, the numer-
ical results for ρc/ρa = 1.01 (ε = 6.58 × 10−2) agree
well with the analytical results only during the slumping

stage (t � 4.5), but deviate from the analytical results
during the self-similar stage (t � 4.5). This agreement
during the slumping stage and deviation during the self-
similar stage occurs because ε is set using the analytical
relationship (Eq. (19)) for the slumping stage of the dam-
break problem. During the slumping stage, hN and uN are
constant so that ε based on Eq. (19) provides the correct
front condition. During the self-similar stage, on the other
hand, the driving pressure, and hence hN and uN, decrease
with time; therefore, the assumed value of ε is no longer
consistent with the front condition Eq. (7).
The good agreement in the results of the AB model for

ρc/ρa = 1000 reflects the fact that the dynamics of the
gravity current becomes insensitive to the front condition
for large values of ρc/ρa. In Fig. 5b, ε approaches 0 as
ρc/ρa increases. In the limit as ρc/ρa → ∞ and ε → 0,
uN asymptotically approaches its maximum value, 2, and
hN asymptotically approaches 0. For sufficiently small ε,
the solution converges to that in the limit as uN → 2
and hN → 0, and it becomes insensitive to the value of
ε (see Fig. 5a). Indeed, as shown in Fig. 8b, we can con-
firm that the result of the AB model with a very small
ε (ε = 1.0 × 10−10) is indistinguishable from that for
ρc/ρa = 1000 (ε = 4.58 × 10−7). According to Fig. 5,
the results of the AB model for the dam-break problem
are insensitive to ε when ε � 10−5, which corresponds
to ρc/ρa � 102 (Fig. 5b). Consequently, we suggest that
the AB model is favorable for simulating gravity currents
with high ρc/ρa for which the dynamics of the current is
insensitive to the assumed value of ε.

Fig. 6 Analytical results (red curves) and numerical results from the BC model (blue symbols) for h(x, t) and xN(t). a ρc/ρa = 1.01. b ρc/ρa = 1000
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Fig. 7 Speed of the front position, ẋN, in the early time steps. a Comparisons between the analytical result with ρc/ρa = 1000 (red line) and
numerical results of the BC model with ρc/ρa = 1000 (blue symbols) and of the AB model with ε = 4.58 × 10−7 (green symbols). In the numerical
calculations, �x = 1.0 × 10−4. b Illustrations of the overestimation of ẋN by the BC model in t � 0.0002 in (a)

Fig. 8 Analytical results (red curves) and numerical results of the AB model (symbols) for h(x, t) and xN(t). a ρc/ρa = 1.01. b ρc/ρa = 1000. In the
numerical results, blue symbols represent the numerical results given ε based on the analytical solution during the slumping stage (a ε = 6.58×10−2;
b ε = 4.58 × 10−7). Green symbols represent the numerical results given ε = 1.0 × 10−10
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Applicability of the BC and ABmodels
Our results indicate that the BC and AB models each
have their own advantages and disadvantages. The results
obtained from the BC model agree well with the analyti-
cal results when ρc/ρa � 102 (Fig. 6a), whereas they show
a numerical oscillation at the flow front and tend to over-
estimate the front speed when ρc/ρa � 102 (Fig. 7). No
such numerical oscillation nor overestimation is observed
in the results from the AB model. For currents with
ρc/ρa � 102, the AB model provides good approxima-
tions of the analytical results, given a sufficiently small ε

(Figs. 5 and 8b). For currents with ρc/ρa � 102, however,
the AB model may fail to reproduce the analytical results
for currents where the height and speed of the front
change with time (Fig. 8a). Accordingly, we propose that
the BC model should be used for currents with ρc/ρa �
102 and the AB model is applicable only to currents
with ρc/ρa � 102.
Because of its simple coding and numerical stability,

the AB model with an arbitrarily small ε is commonly
used for simulations of gravity currents in many geophys-
ical situations (e.g., Denlinger and Iverson 2004; Doyle
et al. 2007, 2008, 2011; Larrieu et al. 2006). This model
would be applicable in simulating gravity currents with
high values of ρc/ρa, such as debris flows (e.g., Denlinger
and Iverson 2004). However, our results suggest that it
may provide inaccurate results for gravity currents with
ρc/ρa � 102, such as turbidity currents and dilute pyro-
clastic density currents. Numerical results for ρc/ρa = 10
show that the problem arises mainly from the behavior of
the flow front (Fig. 9). Generally, a gravity current with a
relatively low value of ρc/ρa is characterized by the for-
mation of a large front height, which is caused by the
resistance of the ambient fluid. This large front height
is successfully reproduced by the BC model (Fig. 9a),
while the AB model fails to capture it. The results from
the AB model with ε = 10−10 (Fig. 9b) show that the
resistance at the front is too small to develop a large
front height; consequently, the flow speed is substantially
overestimated.

Geophysical application to pyroclastic density currents
Pyroclastic density currents (PDCs) are characterized by
strong density stratification due to particle settling (e.g.,
Branney and Kokelaar 2002), whereby a dilute gravity cur-
rent (particle suspension flow) with ρc/ρa = 100–101
overrides the dense basal gravity current (fluidized gran-
ular flow) with ρc/ρa = 102–103. The dynamics of PDCs
is complex because the dilute and dense currents are
influenced by a number of physical processes such as par-
ticle settling (e.g., Bonnecaze et al. 1993), entrainment
of ambient air (e.g., Johnson and Hogg 2013; Sher and
Woods 2015), and basal resistance (e.g., Roche et al. 2008).
In addition to the effects of these processes, our results
suggest that the application of the correct numerical
model to the flow front is important if we are to under-
stand the dynamics and sedimentation of PDCs. The BC
model should be applied to the overlying dilute current,
while the AB model is applicable to the underlying dense
current. Here, we discuss how the resistance at the flow
front of the dilute part influences the dynamics of PDCs
as a whole.
Before discussing the complex dynamics of PDCs with

strong density stratification, we briefly assess the effects
of some important physical processes on the dilute and
dense currents. Figure 10 shows the results of simula-
tions using the BC model for a dilute gravity current
generated by an instantaneous release (i.e., the dam-break
problem) of an initially homogeneous particle suspen-
sion with ρc/ρa = 8.495. This model accounts for the
effects of particle settling and entrainment of the ambi-
ent fluid following Bonnecaze et al. (1993) and Johnson
and Hogg (2013), respectively. As with a homogeneous
gravity current with a low density ratio (Fig. 6a), a thick
front develops in the dilute gravity current of the particle
suspension, suggesting that the resistance of the ambient
fluid at the front plays a significant role in the dynamics
of the dilute part of PDCs regardless of the presence or
absence of the effects of particle settling or entrainment.
Figure 11 compares our numerical results obtained

using the AB model with experimental results for a

Fig. 9 Numerical results of h(x, t) for ρc/ρa = 10. a BC model. b AB model with ε = 1.0 × 10−10. In (b), ρc/ρa = 10 is given when the basic
equations (Eqs. (1) and (2)) are non-dimensionalized using Eqs. (4) and (5)
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Fig. 10 Numerical results of a one-layer dilute PDC model for the dam-break problem. Heights hL at a t = 1 and b t = 10 are shown for cases of
entraining (solid curves) and non-entraining (dotted curves) currents. The initial density ratio (ρ∗

L /ρa) is set to 8.495, and the BC model is applied. The
variables are non-dimensionalized using the initial values (e.g., Eqs. (4) and (5)). Given parameters: aspect ratio (initial height/initial length) = 1; initial
particle concentration = 0.005; density ratio (particles/air) = 1500; density ratio (volcanic gas/air) = 1; and non-dimensional particle settling speed
= 0.05

granular flow with ρc/ρa = 102–103 generated by an
instantaneous release of an initially fluidized bed (Roche
et al. 2008). Because the initial acceleration regime of
the experimental setup (i.e., just after the release; (i) in
Fig. 11b) is beyond the applicable range of the shallow-
water model, we focus on the subsequent regimes here.
The numerical results obtained using the AB model show
the formation of a wedge-shaped flow front (Fig. 11a),
which is in agreement with the experimental results of
Roche et al. (2008). The results also indicate that the
dynamics of the dense fluidized granular flow can be
quantitatively simulated by the AB model when a suit-
able rheological model is applied for the basal resistance
(Fig. 11b). The shear drag model explains the behavior
during the constant velocity regime ((ii) in Fig. 11b; see
Roche et al. 2008), whereas the Coulomb friction model
better reproduces the features of the stopping regime ((iii)
in Fig. 11b; see Roche et al. 2008).
The interplay between the dilute and dense parts may

be crudely simulated by a two-layer model comprising a
dilute layer and a dense layer (Doyle et al. 2008, 2011).

The previous two-layer models for PDCs apply the AB
model with a small ε to both layers. Here, we follow Doyle
et al. (2011) for the basic formulation of the two-layer sys-
tem, but apply the BC model to the dilute layer and the
AB model to the dense layer. We also consider the effects
of basal shear drag in the dense layer and entrainment of
ambient air into the dilute layer (see Appendix for details).
Figure 12 shows a representative result of our two-layer
model for a PDC generated by the instantaneous release of
an initially homogeneous dilute particle suspension with
ρc/ρa = 8.495. When the BC model is applied, a thick
front head develops in the dilute gravity current because
of the resistance of the ambient fluid at the front (see
Fig. 10). On the other hand, a dense gravity current with
ρc/ρa = 600.6 is generated by particle settling from the
overlying dilute gravity current. Because the rate at which
particles are supplied to the dense layer is controlled by
the conditions of the overlying dilute layer (e.g., thickness
and particle concentration), the evolution and dynamics
of the dense layer are critically dependent on those of the
dilute layer. This suggests that the behavior of the flow

Fig. 11 Numerical results of a one-layer dense PDC model for the dam-break problem. The density ratio (ρH/ρa) is set to 600.6, and the AB model
with ε = 10−10 is applied. Given parameters: initial height h0 = 0.2 m, initial length x0 = 0.1 m, density of particles = 1500 kg/m3; density of
volcanic gas = 1 kg/m3; and density of air = 1 kg/m3. a Heights h∗

H of the dense PDC with shear drag at t∗ = 0.0, 0.2, 0.4, and 0.6 s. b Front positions
of the dense PDC with shear drag (red solid curve) and Coulomb friction (blue solid curve). In (b), the numerical results are compared with the
experimental results of an initially fluidized granular flow (black dashed curve) and water (gray solid curve) (Roche et al. 2008). The experimental result
of the initially fluidized granular flow has three distinct regimes: (i) initial acceleration, (ii) constant velocity, and (iii) stopping (see Roche et al. 2008
for details). Note that during (i) and (ii), the initially fluidized granular flow behaves as water. The numerical result with shear drag reproduces the
slope (i.e., the constant velocity) of (ii). The numerical result with Coulomb friction reproduces the features of (iii)
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Fig. 12 Numerical results of a two-layer PDC model for the dam-break problem. The dense current height (hH) and dilute current height (hL + hH) at
a t = 1 and b t = 10 are shown. A PDC is generated by the instantaneous release of an initially homogeneous dilute layer. The overlying dilute layer
(initially ρ∗

L /ρa = 8.495) is calculated using the BC model, and the underlying dense layer (ρH/ρa = 600.6) is calculated using the AB model with
ε = 10−10. Shear drag is applied for the basal resistance of the dense layer. The variables are non-dimensionalized using the initial values of the
dilute layer (e.g., Eqs. (4) and (5)). Given parameters: aspect ratio (initial height/initial length) = 1; initial particle concentration of the dilute layer
= 0.005; density ratio (particles/air) = 1500; density ratio (volcanic gas/air) = 1; and the non-dimensional particle settling speed = 0.05

front of the dilute layer controls not only the dynamics of
the dilute layer but also the dynamics of the stratified PDC
as a whole.
The results in Fig. 12 are preliminary, and a compre-

hensive understanding of the dynamics of PDCs should
consider many other effects, such as the expansion of
entrained air due to heating by pyroclasts, density strat-
ification inside the overlying dilute layer, diffusion of
the pore pressure and entrainment of air in the under-
lying dense layer, and the transport of particles from
the underlying dense layer to the overlying dilute layer
(e.g., Andrews 2014; Breard and Lube 2017; Bursik and
Woods 1996; Dufek and Bergantz 2007; Esposti Ongaro
et al. 2016; Ishimine 2005; Roche et al. 2008; Wilson
and Walker 1982). Nevertheless, preliminary results (not
shown here) have already indicated the diversity of the
interplay between the dilute and dense layers, which
depends on the initial particle concentration and grain
size. The interaction also influences the sedimentation
process from the PDCs (Fujii andNakada 1999). A system-
atic parametric study of the two-layer PDC model using
the BC model is in progress, with the aim of accounting
for the diversity of PDC deposits.

Conclusion
A numerical shallow-water model of simulating gravity
currents for a wide range of ρc/ρa has been proposed.
In the model, the effects of varying ρc/ρa are taken into
account via the front condition. We have assessed two
types of numerical models for the front condition (the
Boundary Condition (BC) model and the Artificial Bed
(AB) model) by comparing their numerical results with
the analytical results. The results from the BCmodel agree
well with the analytical results when ρc/ρa � 102. In
contrast, the AB model generates good approximations
of the analytical results for ρc/ρa � 102. On the basis
of these results, we have developed a two-layer model

of pyroclastic density currents (PDCs), in which the BC
model is used for the overlying dilute part (ρc/ρa =
100–101) and the AB model is used for the underlying
dense part (ρc/ρa = 102–103). This two-layer model suc-
cessfully simulates some essential features of PDCs with
strong density stratification.

Appendix: two-layer model of pyroclastic density
currents
The dynamics of PDCs in which a strong density stratifi-
cation develops is described here by a two-layer shallow-
water model with overlying dilute and underlying dense
layers (Fig. 13). The dilute layer is modeled as a dilute
particle suspension, which is a continuum where mono-
disperse solid particles are suspended in an incom-
pressible gas phase (volcanic gas and entrained air). Its
vertically averaged mass and momentum conservation
equations are respectively

Fig. 13 Two-layer PDC model schematic. In the overlying dilute layer,
the thickness hL, velocity uL, bulk density ρL, particle volume
concentration φsL, and air volume concentration φaL evolve both
temporally and spatially. In the underlying dense layer, the thickness
hH and velocity uH evolve both temporally and spatially
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The dense layer, modeled as a fluidized granular flow con-
sisting of solid particles and volcanic gas, has the following
vertically averaged mass and momentum conservation
equations:
∂h∗

H
∂t∗

+ ∂

∂x∗
(
u∗
Hh∗

H
) = φsL

φsH
Ws,
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∗
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(
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2
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ρH
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= − τ ∗
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+ τ ∗

m
ρH

+ φsL
φsH

u∗
LWs − h∗

H
ρH

∂

∂x∗

((
ρ∗
L−ρa

)
gh∗

L
)
.

(24)

Here, φ(x∗, t∗) is volumetric concentration, and the sub-
scripts L,H, s, g, and a denote the dilute (i.e., low-particle
concentration) and dense (i.e., high-particle concentra-
tion) layers, solid particles, volcanic gas, and air, respec-
tively. Ws is the settling velocity of the particles from the
base of the dilute layer, E is the entrainment coefficient,
τ ∗
m is the interfacial shear drag, and τ ∗

b is basal resistance
of the dense layer.
The bulk density of the dilute layer is denoted by ρ∗

L =
ρsφsL+ρaφaL+ρg(1−φsL−φaL), in which the volume con-
centrations of the solid particles, φsL, and of the entrained
air, φaL, evolve both temporally and spatially on the basis
of their mass conservation equations:

∂

∂t∗
(
φsLh∗

L
) + ∂

∂x∗
(
φsLu∗

Lh
∗
L
) = −φsLWs, (25)

∂

∂t∗
(
φaLh∗

L
) + ∂

∂x∗
(
φaLu∗

Lh
∗
L
) = E|u∗

L|. (26)

In the dilute layer, it is assumed that turbulent mix-
ing is sufficiently intense to maintain vertically uniform
volumetric concentrations (e.g., Bonnecaze et al. 1993;
Bursik and Woods 1996; Johnson and Hogg 2013). The
dense layer is assumed to have a constant bulk density
ρH = ρsφsH + ρg(1 − φsH), where the particle volumetric
concentration φsH is set to 0.4 (Breard et al. 2016).
Interactions between the two layers are treated in the

source terms of Eqs. (21)–(26) (i.e., the right-hand sides
of the equations). Particle settling from the dilute layer to
the dense layer is taken into account in the second source
terms in Eqs. (21) and (22), the source terms in Eqs. (23)
and (25), and the third source term in Eq. (24). The accel-
eration of the dilute layer over the basal contact is taken
into account in the first source term in Eq. (22). The pres-
sure gradient on the dense layer exerted by variations in

the height of the dilute layer is taken into account in the
fourth source term in Eq. (24).
The entrainment of ambient air into the dilute layer is

taken into account in the first source term in Eq. (21) and
the source term in Eq. (26). Thermal expansion of the
entrained air is neglected here for the sake of ease. Air
entrainment is also assumed to occur on the upper surface
of the dilute layer (e.g., Bursik and Woods 1996; Johnson
and Hogg 2013), although a different process for entrain-
ment was recently proposed by Sher and Woods (2015).
We adopted the entrainment coefficient proposed by
Johnson andHogg (2013): i.e., E = 0.075/(1+27Ri), where
Ri ≡ (

ρ∗
L − ρa

)
gh∗

L/
(
ρ∗
Lu

∗2
L

)
.

The interfacial drag τ ∗
m and the basal resistance of the

dense layer τ ∗
b are treated in the source terms in Eqs. (22)

and (24). The interfacial shear drag τ ∗
m is given by (Doyle

et al. 2008, 2011):

τ ∗
m = ρ∗

LCd
(
u∗
L − u∗

H
) |u∗

L − u∗
H|, (27)

where the drag coefficient Cd is set to 0.001 (Hogg and
Pritchard 2004). The basal resistance τ ∗

b is modeled such
that shear drag is adopted during the constant velocity
regime ((ii) of Fig. 11b) and Coulomb friction is adopted
during the stopping regime ((iii) of Fig. 11b):

τ ∗
b =

{
ρHCdu∗

H|u∗
H| (Shear drag),

tan δ (ρH − ρa)gh∗
Hu∗

H/|u∗
H| (Coulomb friction),

(28)

(Figure 11b; see Roche et al. 2008 for details), where
the dynamic basal friction angle δ is set to 20◦ (Doyle
et al. 2008).
The front condition of the dilute layer is given by

(Ungarish 2007):

u∗
NL = Fr

√
ρ∗
NL − ρa

ρa
gh∗

NL at x∗ = x∗
NL, (29)

which is numerically treated by the BC model. The front
condition of the dense layer, given by Eq. (3), is numeri-
cally treated by the AB model with ε = 10−10.
In calculating the two-layer PDC model (Fig. 12), the

conservation Eqs. (21)–(26) were numerically solved. In
calculating the one-layer dilute PDC model (Fig. 10), we
solved conservation Eqs. (21), (22), (25), and (26), where
h∗
H ≈ 0 and u∗

H ≈ 0. In calculating the one-layer dense
PDCmodel (Fig. 11), we solved conservation Eqs. (23) and
(24). For numerical simulations, we used a fractional-step
method to solve the conservation equations with source
terms (e.g., LeVeque 2002), and the HLL approximate Rie-
mann solver to calculate the intercell flux of the equations
(e.g., Toro 2009).

Abbreviations
AB model: Artificial Bed model; BC model: Boundary Condition model; PDC:
Pyroclastic density current
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