759 research outputs found
Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions
Chiral Magnetic Wave (CMW) is a gapless collective excitation of quark-gluon
plasma in the presence of external magnetic field that stems from the interplay
of Chiral Magnetic (CME) and Chiral Separation Effects (CSE); it is composed by
the waves of the electric and chiral charge densities coupled by the axial
anomaly. We consider CMW at finite baryon density and find that it induces the
electric quadrupole moment of the quark-gluon plasma produced in heavy ion
collisions: the "poles" of the produced fireball (pointing outside of the
reaction plane) acquire additional positive electric charge, and the "equator"
acquires additional negative charge. We point out that this electric quadrupole
deformation lifts the degeneracy between the elliptic flows of positive and
negative pions leading to , and estimate the magnitude
of the effect.Comment: 4 pages, 3 figure
A Convenient Standard Cell
Until recently both the Clark and the Weston cells have served as standard sources of electromotive force. Both of these consist of an amalgam of a metal as the anode covered by a saturated solution of the sulphate of the metal and this in conjunction with mercury and mercurous sulphate which serves as the cathode
The shape of a moving fluxon in stacked Josephson junctions
We study numerically and analytically the shape of a single fluxon moving in
a double stacked Josephson junctions (SJJ's) for various junction parameters.
We show that the fluxon in a double SJJ's consists of two components, which are
characterized by different Swihart velocities and Josephson penetration depths.
The weight coefficients of the two components depend on the parameters of the
junctions and the velocity of the fluxon. It is shown that the fluxon in SJJ's
may have an unusual shape with an inverted magnetic field in the second
junction when the velocity of the fluxon is approaching the lower Swihart
velocity. Finally, we study the influence of fluxon shape on flux-flow
current-voltage characteristics and analyze the spectrum of Cherenkov radiation
for fluxon velocity above the lower Swihart velocity. Analytic expression for
the wavelength of Cherenkov radiation is derived.Comment: 12 pages, 12 figure
Photonic bandgap plasmonic waveguides
A novel type of a plasmonic waveguide has been proposed featuring an "open"
design that is easy to manufacture, simple to excite and that offers a
convenient access to a plasmonic mode. Optical properties of photonic bandgap
(PBG) plasmonic waveguides are investigated experimentally by leakage radiation
microscopy and numerically using the finite element method confirming photonic
bandgap guidance in a broad spectral range. Propagation and localization
characteristics of a PBG plasmonic waveguide have been discussed as a function
of the wavelength of operation, waveguide core size and the number of ridges in
the periodic reflector for fundamental and higher order plasmonic modes of the
waveguide
Intracranial EEG fluctuates over months after implanting electrodes in human brain.
OBJECTIVE: Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings.
APPROACH: Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient\u27s recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability.
MAIN RESULTS: A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant.
SIGNIFICANCE: These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in patients, depending upon the application, may require extended monitoring
Proton Stability in Six Dimensions
We show that Lorentz and gauge invariance explain the long proton lifetime
within the standard model in six dimensions. The baryon-number violating
operators have mass dimension 15 or higher. Upon TeV-scale compactification of
the two universal extra dimensions on a square orbifold, a discrete
subgroup of the 6-dimensional Lorentz group continues to forbid dangerous
operators.Comment: PRL accepted versio
Holographic Pomeron and the Schwinger Mechanism
We revisit the problem of dipole-dipole scattering via exchanges of soft
Pomerons in the context of holographic QCD. We show that a single closed string
exchange contribution to the eikonalized dipole-dipole scattering amplitude
yields a Regge behavior of the elastic amplitude; the corresponding slope and
intercept are different from previous results obtained by a variational
analysis of semi-classical surfaces. We provide a physical interpretation of
the semi-classical worldsheets driving the Regge behavior for (-t)>0 in terms
of worldsheet instantons. The latter describe the Schwinger mechanism for
string pair creation by an electric field, where the longitudinal electric
field E_L=\sigma_T tanh(\chi/2) at the origin of this non-perturbative
mechanism is induced by the relative rapidity {\chi} of the scattering dipoles.
Our analysis naturally explains the diffusion in the impact parameter space
encoded in the Pomeron exchange; in our picture, it is due to the Unruh
temperature of accelerated strings under the electric field. We also argue for
the existence of a "micro-fireball" in the middle of the transverse space due
to the soft Pomeron exchange, which may be at the origin of the thermal
character of multiparticle production in ep/pp collisions. After summing over
uncorrelated multi-Pomeron exchanges, we find that the total dipole-dipole
cross section obeys the Froissart unitarity bound.Comment: 17 pages, 4 figures, version 2: minor typos corrected, references
adde
- …