102 research outputs found

    Simulations of starspot anomalies within TESS exoplanetary transit light curves -- I. The detection limits of starspot anomalies in TESS light curves

    Full text link
    20573 simulations of planetary transits around spotted stars were conducted using the transit-starspot model, \texttt{PRISM}. In total 3888 different scenarios were considered using three different host star spectral types, M4V, M1V and K5V. The mean amplitude of the starspot anomaly was measured and compared to the photometric precision of the light curve, to determine if the starspot anomaly's characteristic "blip" was noticeable in the light curve. The simulations show that, starspot anomalies will be observable in TESS 2\,min cadence data. The smallest starspot detectable in TESS transit light curves has a radius of ≈1900\approx1900\,km. The starspot detection limits for the three host stars are: 4900±17004900\pm1700\,km (M4V), 13800±600013800\pm6000\,km (M1V) and 15900±680015900\pm6800\,km (K5V). The smallest change in flux of the starspot (ΔFspot=0.00015±0.00001\Delta F_\mathrm{spot} = 0.00015\pm0.00001) can be detected when the ratio between the planetary and stellar radii, k=0.082±0.004k = 0.082\pm0.004. The results confirm known dependencies between the amplitude of the starspot anomaly and the photometric parameters of the light curve. The results allowed the characterisation of the relationship between the change in flux of the starspot anomaly and the change in flux of the planetary transit for TESS transit light curves.Comment: 24 Pages, 12 Figures. Accepted for publication in A&A, section 10. Planets and planetary system

    First observations and magnitude measurement of Starlink's Darksat

    Get PDF
    Measure the Sloan g' magnitudes of the Starlink's STARLINK-1130 (Darksat) and 1113 LEO communication satellites and determine the effectiveness of the Darksat darkening treatment at 475.4\,nm. Two observations of the Starlink's Darksat LEO communication satellite were conducted on 2020/02/08 and 2020/03/06 using a Sloan r' and g' filter respectively. While a second satellite, STARLINK-1113 was observed on 2020/03/06 using a Sloan g' filter. The initial observation on 2020/02/08 was a test observation when Darksat was still manoeuvring to its nominal orbit and orientation. Based on the successful test observation, the first main observation was conducted on 2020/03/06 along with an observation of the second Starlink satellite. The calibration, image processing and analysis of the Darksat Sloan g' image gives an estimated Sloan g' magnitude of 7.46±0.047.46\pm0.04 at a range of 976.50\,km. For STARLINK-1113 an estimated Sloan g' magnitude of 6.59±0.056.59\pm0.05 at a range of 941.62\,km was found. When scaled to a range of 550\,km and corrected for the solar and observer phase angles, a reduction by a factor of two is seen in the reflected solar flux between Darksat and STARLINK-1113. The data and results presented in this work, show that the special darkening coating used by Starlink for Darksat has darkened the Sloan g' magnitude by 0.77±0.050.77\pm0.05\,mag, when the range is equal to a nominal orbital height (550\,km). This result will serve members of the astronomical community modelling the satellite mega-constellations, to ascertain their true impact on both the amateur and professional astronomical communities. Concurrent and further observations are planned to cover the full optical and NIR spectrum, from an ensemble of instruments, telescopes and observatories.Comment: Accepted for publication in A&A Letters. 5 pages, 2 figures and 4 table

    Spectroscopic Observations of New Oort Cloud Comet 2006 VZ13 and Four Other Comets

    Full text link
    Spectral data are presented for comets 2006 VZ13 (LINEAR), 2006 K4 (NEAT), 2006 OF2 (Broughton), 2P/Encke, and 93P/Lovas I, obtained with the Cerro-Tololo Inter-American Observatory 1.5-m telescope in August 2007. Comet 2006 VZ13 is a new Oort cloud comet and shows strong lines of CN (3880 angstroms), the Swan band sequence for C_2 (4740, 5160, and 5630 angstroms), C_3 (4056 angstroms), and other faint species. Lines are also identified in the spectra of the other comets. Flux measurements of the CN, C_2 (Delta v = +1,0), and C_3 lines are recorded for each comet and production rates and ratios are derived. When considering the comets as a group, there is a correlation of C_2 and C_3 production with CN, but there is no conclusive evidence that the production rate ratios depend on heliocentric distance. The continuum is also measured, and the dust production and dust-to-gas ratios are calculated. There is a general trend, for the group of comets, between the dust-to-gas ratio and heliocentric distance, but it does not depend on dynamical age or class. Comet 2006 VZ13 is determined to be in the carbon-depleted (or Tempel 1 type) class.Comment: 8 pages, 6 figures, 6 tables; Accepted by MNRA

    Synthetic NLTE accretion disc spectra for the dwarf nova SS Cyg during an outburst cycle

    Full text link
    Dwarf nova outbursts result from enhanced mass transport through the accretion disc of a cataclysmic variable system. We assess the question of whether these outbursts are caused by an enhanced mass transfer from the late-type main sequence star onto the white dwarf (so-called mass transfer instability model, MTI) or by a thermal instability in the accretion disc (disc instability model, DIM). We compute non-LTE models and spectra of accretion discs in quiescence and outburst and construct spectral time sequences for discs over a complete outburst cycle. We then compare our spectra to published optical spectroscopy of the dwarf nova SS Cygni. In particular, we investigate the hydrogen and helium line profiles that are turning from emission into absorption during the rise to outburst. The evolution of the hydrogen and helium line profiles during the rise to outburst and decline clearly favour the disc-instability model. Our spectral model sequences allow us to distinguish inside-out and outside-in moving heating waves in the disc of SS Cygni, which can be related to symmetric and asymmetric outburst light curves, respectively.Comment: 8 pages, 8 figures; accepted to A&

    A search for evidence of irradiation in Centaurus X-4 during quiescence

    Get PDF
    We present a study of the neutron star X-Ray Transient Cen X-4. Our aim is to look for any evidence of irradiation of the companion with a detailed analysis of its radial velocity curve, relative contribution of the donor star and Doppler tomography of the main emission lines. To improve our study all our data are compared with a set of simulations that consider different physical parameters of the system, like the disc aperture angle and the mass ratio. We conclude that neither the radial velocity curve nor the orbital variation of the relative donor's contribution to the total flux are affected by irradiation. On the other hand, we do see emission from the donor star at Hα{\alpha} and HeI 5876 which we tentatively attribute to irradiation effects. In particular, the Hα{\alpha} emission from the companion is clearly asymmetric and we suggest is produced by irradiation from the hot-spot. Finally, from the velocity of the HeI 5876 spot we constrain the disc opening angle to alpha=7-14 deg.Comment: 4 pages, 5 figures, accepted for publication in A&A as a R

    New results on GP Com

    Full text link
    We present high resolution optical and UV spectra of the 46 min orbital period, helium binary, GP Com. Our data contains simultaneous photometric correction which confirms the flaring behaviour observed in previous optical and UV data. In this system all lines show a triple peaked structure where the outer two peaks are associated with the accretion disc around the compact object. The main aim of this paper is to constrain the origin of the central peak, also called ``central spike''. We find that the central spike contributes to the flare spectra indicating that its origin is probably the compact object. We also detect that the central spike moves with orbital phase following an S-wave pattern. The radial velocity semiamplitude of the S-wave is ~10 km/s indicating that its origin is near the centre of mass of the system, which in this case lies very close to the white dwarf. Our resolution is higher than that of previous data which allows us to resolve structure in the central peak of the line. The central spike in three of the HeI lines shows another peak blueshifted with respect to the main peak. We propose that one of the peaks is a neutral helium forbidden transition excited in a high electron density region. This forbidden transition is associated with the permitted one (the stronger peak in two of the lines). The presence of a high electron density region again favours the white dwarf as their origin.Comment: 14 pages, 16 figures. Accepted for publication in A&

    Optical-to-NIR magnitude measurements of the Starlink LEO Darksat satellite and effectiveness of the darkening treatment

    Full text link
    Four observations of Starlink's LEO communication satellites, Darksat and STARLINK-1113, were conducted on two nights with two telescopes. The Chakana 0.6\,m telescope at the Ckoirama observatory (Chile) observed both satellites on 5\,Mar\,2020 (UTC) and 7\,Mar\,2020 (UTC) using a Sloan r' and Sloan i' filter, respectively. The ESO VISTA 4.1\,m telescope with the VIRCAM instrument observed both satellites on 5\,Mar\,2020 (UTC) and 7\,Mar\,2020 (UTC) in the NIR J-band and Ks-band, respectively. The calibration, image processing, and analysis of the Darksat images give r\,≈\approx\,5.6\,mag, i\,≈\approx\,5.0\,mag, J\,≈\approx\,4.2\,mag, and Ks\,≈\approx\,4.0\,mag when scaled to a range of 550\,km (airmass =1=1) and corrected for the solar incidence and observer phase angles. In comparison, the STARLINK-1113 images give r\,≈\approx\,4.9\,mag, i\,≈\approx\,4.4\,mag, J\,≈\approx\,3.8\,mag, and Ks\,≈\approx\,3.6\,mag when corrected for range, solar incidence, and observer phase angles. The data and results presented in this work show that the special darkening coating used by Starlink for Darksat has darkened the Sloan r' magnitude by 50\,\%, Sloan i' magnitude by 42\,\%, NIR J magnitude by 32\,\%, and NIR Ks magnitude by 28\,\%. The results show that both satellites increase in reflective brightness with increasing wavelength and that the effectiveness of the darkening treatment is reduced at longer wavelengths. This shows that the mitigation strategies being developed by Starlink and other LEO satellite operators need to take into account other wavelengths, not just the optical. This work highlights the continued importance of obtaining multi-wavelength observations of many different LEO satellites in order to characterise their reflective properties and to aid the community in developing impact simulations and developing mitigation tools.Comment: Accepted for publication in A&A, 10 pages, 10 figures, 3 table

    EURONEAR - Recovery, Follow-up and Discovery of NEAs and MBAs using Large Field 1-2m Telescopes

    Full text link
    We report on the follow-up and recovery of 100 program NEAs, PHAs and VIs using the ESO/MPG 2.2m, Swope 1m and INT 2.5m telescopes equipped with large field cameras. The 127 fields observed during 11 nights covered 29 square degrees. Using these data, we present the incidental survey work which includes 558 known MBAs and 628 unknown moving objects mostly consistent with MBAs from which 58 objects became official discoveries. We planned the runs using six criteria and four servers which focus mostly on faint and poorly observed objects in need of confirmation, follow-up and recovery. We followed 62 faint NEAs within one month after discovery and we recovered 10 faint NEAs having big uncertainties at their second or later opposition. Using the INT we eliminated 4 PHA candidates and VIs. We observed in total 1,286 moving objects and we reported more than 10,000 positions. All data were reduced by the members of our network in a team effort, and reported promptly to the MPC. The positions of the program NEAs were published in 27 MPC and MPEC references and used to improve their orbits. The O-C residuals for known MBAs and program NEAs are smallest for the ESO/MPG and Swope and about four times larger for the INT whose field is more distorted. The incidental survey allowed us to study statistics of the MBA and NEA populations observable today with 1--2m facilities. We calculate preliminary orbits for all unknown objects, classifying them as official discoveries, later identifications and unknown outstanding objects. The orbital elements a, e, i calculated by FIND_ORB software for the official discoveries and later identified objects are very similar with the published elements which take into account longer observational arcs; thus preliminary orbits were used in statistics for the whole unknown dataset. (CONTINUED)Comment: Accepted in Planetary and Space Science (Aug 2011
    • …
    corecore