27 research outputs found

    Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice

    Get PDF
    Aims: Mutations in DNA/RNA-binding factor (fused-in-sarcoma) FUS and superoxide dismutase-1 (SOD-1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD-1-G93A (SOD-1) and new FUS[1-359]-transgenic (FUS-tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti-inflammatory treatments were investigated using these mutants. Methods: FUS-tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti-inflammatory drug a selective blocker of cyclooxygenase-2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro-Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti-inflammatory properties. SOD-1 mice received i.c.v.-administration of Neuro-Cells or vehicle. Results: All FUS-tg-treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS-tg-vehicle-treated mice. Neuro-Cell-treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib-FUS-tg-treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium-binding adapter molecule-1 (Iba-1), and glycogen-synthase-kinase-3ß (GSK-3ß). The Neuro-Cells-treated-SOD-1 mice showed better motor functions than vehicle-treated-SOD-1 group. Conclusion: The neuropathology in FUS-tg mice is sensitive to standard ALS treatments and Neuro-Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation. © 2019 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons LtdWe thank ?5-100? Russian Excellence Program, Prof. Daniel C. Anthony, Diana Babayevskaya, and Arina Kosakova for their highly valuable contribution. ?Neuro-Cells? preparation was provided by Neuroplast BV, Maastricht, Netherlands

    Zhurnal Vyss. Nervn. Deyatelnosti Im. I P Pavlov.

    No full text
    Serotonin contents in the paraventricular hypothalamic nucleus (PVN) and dorsal hippocampis of rats with different levels of inborn motor activity were studied by microdialysis in basal and stimulated conditions. Rats were exposed to elevated platform and forced swimming stress. In basal conditions, differences in serotonin contents between rats with different levels of inborn motor activity were found neither in hippocampus nor in PVN. In both kinds of stress conditions, serotonin content in hippocampus increased only in rats with higher level of inborn motor activity. Serotonin content in PVN dramatically increased during forced swiumming in both rat groups. This increase was significantly more pronounced in rats with low activity. The data suggest that serotonin release in stress depends on inborn motor activity, brain area dialyzed, and the stressor the animals were exposed

    Inborn vs. Acquired Anxiety in Cross-Breeding and Cross-Fostering HAB/LAB Mice Bred for Extremes in Anxiety-Related Behavior

    No full text
    This study focused on genetically determined versus acquired factors in shaping anxiety-related behavior by combining cross-breeding and cross-fostering approaches. Via cross-breeding of HAB (high anxiety-related behavior) female and LAB (low anxiety-related behavior) male mice, we obtained F1 hybrids with intermediate anxiety levels carrying genetic characteristics of both parental lines. Pups were raised either by their biological HAB (noncross-fostered control) or foster LAB (cross-fostered) mothers. Compared to controls, 6-week-old offspring raised by LAB mothers showed lower levels of anxiety in the elevated plus-maze and open field, but not the light-dark box, tests. No differences were found in the forced swim test reflecting active versus passive coping. The behavioral changes were associated with increased stress-induced concentrations of plasma corticosterone in cross-fostered animals. The expression of the corticotropin-releasing hormone receptor type I and glucocorticoid receptor genes did not differ in limbic and hypothalamic brain areas between cross-fostered and control mice. The data suggest that LAB-typical maternal care may partially shift behavioral and neuroendocrine characteristics of F1 crosses carrying both HAB and LAB alleles from intermediate toward reduced anxiety-related behavior

    Enhanced conditioning of adverse memories in the mouse modified swim test is associated with neuroinflammatory changes - Effects that are susceptible to antidepressants

    No full text
    Deficient learning and memory are well-established pathophysiologic features of depression, however, mechanisms of the enhanced learning of aversive experiences associated with this disorder are poorly understood. Currently, neurobiological mechanisms of enhanced retention of aversive memories during depression, and, in particular, their relation to neuroinflammation are unclear. As the association between major depressive disorder and inflammation has been recognized for some time, we aimed to address whether neuroinflammatory changes are involved in enhanced learning of adversity in a depressive state. To study this question, we used a recently described mouse model of enhanced contextual conditioning of aversive memories, the modified forced swim model (modFST). In this model, the classic two-day forced swim is followed by an additional delayed session on Day 5, where increased floating behaviour and upregulated glycogen synthase kinase-3 (GSK-3) are context-dependent. Here, increased time spent floating on Day 5, a parameter of enhanced learning of the adverse context, was accompanied by hypercorticosteronemia, increased gene expression of GSK-3 alpha, GSK-3 beta, c-Fos, cyclooxygenase-1 (COX-1) and pro-inflammatory cytokines interleukin-1 beta (IL-1 beta), tumor necrosis factor (TNF), and elevated concentrations of protein carbonyl, a marker of oxidative stress, in the prefrontal cortex and hippocampus. There were significant correlations between cytokine levels and GSK-3 beta gene expression. Two-week administration of compounds with antidepressant properties, imipramine (7 mg/kg/day) or thiamine (vitamin B1; 200 mg/kg/day) ameliorated most of the modFST-induced changes. Thus, enhanced learning of adverse memories is associated with pro-inflammatory changes that should be considered for optimizing pharmacotherapy of depression associated with enhanced learning of aversive memories

    Aberrant Ganglioside Functions to Underpin Dysregulated Myelination, Insulin Signalling, and Cytokine Expression: Is There a Link and a Room for Therapy?

    No full text
    Gangliosides are molecules widely present in the plasma membranes of mammalian cells, participating in a variety of processes, including protein organization, transmembrane signalling and cell adhesion. Gangliosides are abundant in the grey matter of the brain, where they are critically involved in postnatal neural development and function. The common precursor of the majority of brain gangliosides, GM3, is formed by the sialylation of lactosylceramide, and four derivatives of its a-and b-series, GM1, GD1a, GD1b and GT1b, constitute 95% of all the brain gangliosides. Impairments in ganglioside metabolism due to genetic abnormalities of GM-synthases are associated with severe neurological disorders. Apart from that, the latest genome-wide association and translational studies suggest a role of genes involved in brain ganglioside synthesis in less pervasive psychiatric disorders. Remarkably, the most recent animal studies showed that abnormal ganglioside functions result in dysregulated neuroinflammation, aberrant myelination and altered insulin receptor signalling. At the same time, these molecular features are well established as accompanying developmental psychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). This led us to hypothesize a role of deficient ganglioside function in developmental neuropsychiatric disorders and warrants further gene association clinical studies addressing this question. Here, we critically review the literature to discuss this hypothesis and focus on the recent studies on ST3GAL5-deficient mice. In addition, we elaborate on the therapeutic potential of various anti-inflammatory remedies for treatment of developmental neuropsychiatric conditions related to aberrant ganglioside functions

    Enhanced conditioning of adverse memories in the mouse modified swim test is associated with neuroinflammatory changes - effects that are susceptible to antidepressants

    Full text link
    Deficient learning and memory are well-established pathophysiologic features of depression, however, mechanisms of the enhanced learning of aversive experiences associated with this disorder are poorly understood. Currently, neurobiological mechanisms of enhanced retention of aversive memories during depression, and, in particular, their relation to neuroinflammation are unclear. As the association between major depressive disorder and inflammation has been recognized for some time, we aimed to address whether neuroinflammatory changes are involved in enhanced learning of adversity in a depressive state. To study this question, we used a recently described mouse model of enhanced contextual conditioning of aversive memories, the modified forced swim model (modFST). In this model, the classic two-day forced swim is followed by an additional delayed session on Day 5, where increased floating behaviour and upregulated glycogen synthase kinase-3 (GSK-3) are context-dependent. Here, increased time spent floating on Day 5, a parameter of enhanced learning of the adverse context, was accompanied by hypercorticosteronemia, increased gene expression of GSK-3α, GSK-3β, c-Fos, cyclooxygenase- 1 (COX-1) and pro-inflammatory cytokines interleukin-1 beta (IL-1β), tumor necrosis factor (TNF), and elevated concentrations of protein carbonyl, a marker of oxidative stress, in the prefrontal cortex and hippocampus. There were significant correlations between cytokine levels and GSK-3β gene expression. Two-week administration of compounds with antidepressant properties, imipramine (7 mg/kg/day) or thiamine (vitamin B1; 200mg/kg/day) ameliorated most of the modFST-induced changes. Thus, enhanced learning of adverse memories is associated with pro-inflammatory changes that should be considered for optimizing pharmacotherapy of depression associated with enhanced learning of aversive memories.“5–100” Russian Research Excellence progra
    corecore