14 research outputs found

    Machine learning model demonstrates stunting at birth and systemic inflammatory biomarkers as predictors of subsequent infant growth - A four-year prospective study

    Get PDF
    Background: Stunting affects up to one-third of the children in low-to-middle income countries (LMICs) and has been correlated with decline in cognitive capacity and vaccine immunogenicity. Early identification of infants at risk is critical for early intervention and prevention of morbidity. The aim of this study was to investigate patterns of growth in infants up through 48 months of age to assess whether the growth of infants with stunting eventually improved as well as the potential predictors of growth.Methods: Height-for-age z-scores (HAZ) of children from Matiari (rural site, Pakistan) at birth, 18 months, and 48 months were obtained. Results of serum-based biomarkers collected at 6 and 9 months were recorded. A descriptive analysis of the population was followed by assessment of growth predictors via traditional machine learning random forest models.Results: Of the 107 children who were followed up till 48 months of age, 51% were stunted (HAZ \u3c - 2) at birth which increased to 54% by 48 months of age. Stunting status for the majority of children at 48 months was found to be the same as at 18 months. Most children with large gains started off stunted or severely stunted, while all of those with notably large losses were not stunted at birth. Random forest models identified HAZ at birth as the most important feature in predicting HAZ at 18 months. Of the biomarkers, AGP (Alpha- 1-acid Glycoprotein), CRP (C-Reactive Protein), and IL1 (interleukin-1) were identified as strong subsequent growth predictors across both the classification and regressor models.Conclusion: We demonstrated that children most children with stunting at birth remained stunted at 48 months of age. Value was added for predicting growth outcomes with the use of traditional machine learning random forest models. HAZ at birth was found to be a strong predictor of subsequent growth in infants up through 48 months of age. Biomarkers of systemic inflammation, AGP, CRP, IL1, were also strong predictors of growth outcomes. These findings provide support for continued focus on interventions prenatally, at birth, and early infancy in children at risk for stunting who live in resource-constrained regions of the world

    Promising biomarkers of environmental enteric dysfunction: a prospective cohort study in Pakistani children.

    Get PDF
    Environmental Enteric Dysfunction (EED), a syndrome characterized by chronic gut inflammation, contributes towards stunting and poor response to enteric vaccines in children in developing countries. In this study, we evaluated major putative biomarkers of EED using growth faltering as its clinical proxy. Newborns (n = 380) were enrolled and followed till 18 months with monthly anthropometry. Biomarkersassociated with gut and systemic inflammation were assessed at 6 and 9 months. Linear mixed effects model was used to determine the associations of these biomarkers with growth faltering between birth and 18 months. Fecal myeloperoxidase (neutrophil activation marker) at 6 months [β = -0.207, p = 0.005], and serum GLP 2 (enterocyte proliferation marker) at 6 and 9 months [6M: β = -0.271, p = 0.035; 9M: β = -0.267, p = 0.045] were associated with decreasing LAZ score. Ferritin at 6 and 9 months was associated with decreasing LAZ score [6M: β = -0.882, p \u3c 0.0001; 9M: β = -0.714, p \u3c 0.0001] and so was CRP [β = -0.451, p = 0.039] and AGP [β = -0.443, p = 0.012] at 9 months. Both gut specific and systemic biomarkers correlated negatively with IGF-1, but only weakly correlated, if at all with each other. We therefore conclude that EED may be contributing directly towards growth faltering, and this pathway is not entirely through the pathway of systemic inflammation

    Study of environmental enteropathy and malnutrition (SEEM) in Pakistan: protocols for biopsy based biomarker discovery and validation

    Get PDF
    Background: Environmental Enteropathy (EE), characterized by alterations in intestinal structure, function, and immune activation, is believed to be an important contributor to childhood undernutrition and its associated morbidities, including stunting. Half of all global deaths in children \u3c 5 years are attributable to under-nutrition, making the study of EE an area of critical priority. Methods: Community based intervention study, divided into two sub-studies, 1) Longitudinal analyses and 2) Biopsy studies for identification of EE features via omics analyses. Birth cohorts in Matiari, Pakistan established: moderately or severely malnourished (weight for height Z score (WHZ) \u3c − 2) children, and well-nourished (WHZ \u3e 0) children. Blood, urine, and fecal samples, for evaluation of potential biomarkers, will be collected at various time points from all participants (longitudinal analyses). Participants will receive appropriate educational and nutritional interventions; non-responders will undergo further evaluation to determine eligibility for further workup, including upper gastrointestinal endoscopy. Histopathological changes in duodenal biopsies will be compared with duodenal biopsies obtained from USA controls who have celiac disease, Crohn’s disease, or who were found to have normal histopathology. RNA-Seq will be employed to characterize mucosal gene expression across groups. Duodenal biopsies, luminal aspirates from the duodenum, and fecal samples will be analyzed to define microbial community composition (omic analyses). The relationship between histopathology, mucosal gene expression, and community configuration will be assessed using a variety of bioinformatic tools to gain better understanding of disease pathogenesis and to identify mechanism-based biomarkers. Ethical review committees at all collaborating institutions have approved this study. All results will be made available to the scientific community. Discussion: Operational and ethical constraints for safely obtaining intestinal biopsies from children in resource-poor settings have led to a paucity of human tissue-based investigations to understand and reverse EE in vulnerable populations. Furthermore, EE biomarkers have rarely been correlated with gold standard histopathological confirmation. The Study of Environmental Enteropathy and Malnutrition (SEEM) is designed to better understand the pathophysiology, predictors, biomarkers, and potential management strategies of EE to inform strategies to eradicate this debilitating pathology and accelerate progress towards the 2030 Sustainable Development Goals. Trial registration: Retrospectively registered; clinicaltrials.gov ID NCT03588013

    Gut integrity and duodenal enteropathogen burden in undernourished children with environmental enteric dysfunction

    Get PDF
    Environmental enteric dysfunction (EED) is a subclinical condition of intestinal inflammation, barrier dysfunction and malabsorption associated with growth faltering in children living in poverty. This study explores association of altered duodenal permeability (lactulose, rhamnose and their ratio) with higher burden of enteropathogen in the duodenal aspirate, altered histopathological findings and higher morbidity (diarrhea) that is collectively associated with linear growth faltering in children living in EED endemic setting. In a longitudinal birth cohort, 51 controls (WHZ \u3e 0, HAZ \u3e -1.0) and 63 cases (WHZ\u3c -2.0, refractory to nutritional intervention) were recruited. Anthropometry and morbidity were recorded on monthly bases up to 24 months of age. Dual sugar assay of urine collected after oral administration of lactulose and rhamnose was assessed in 96 children from both the groups. Duodenal histopathology (n = 63) and enteropathogen analysis of aspirate via Taqman array card (n = 60) was assessed in only cases. Giardia was the most frequent pathogen and was associated with raised L:R ratio (p = 0.068). Gastric microscopy was more sensitive than duodenal aspirate in H. pylori detection. Microscopically confirmed H. pylori negatively correlated with HAZ at 24 months (r = -0.313, p = 0.013). Regarding histopathological parameters, goblet cell reduction significantly correlated with decline in dual sugar excretion (p\u3c 0.05). Between cases and controls, there were no significant differences in the median (25th, 75th percentile) of urinary concentrations (μg/ml) of lactulose [27.0 (11.50, 59.50) for cases vs. 38.0 (12.0, 61.0) for controls], rhamnose [66.0 (28.0, 178.0) vs. 86.5 (29.5, 190.5)] and L:R ratio [0.47 (0.24, 0.90) vs. 0.51 (0.31, 0.71)] respectively. In multivariable regression model, 31% of variability in HAZ at 24 months of age among cases and controls was explained by final model including dual sugars. In conclusion, enteropathogen burden is associated with altered histopathological features and intestinal permeability. In cases and controls living in settings of endemic enteropathy, intestinal permeability test may predict linear growth. However, for adoption as a screening tool for EED, further validation is required due to its complex intestinal pathophysiology

    Impact of enteropathogens on faltering growth in a resource-limited setting

    No full text
    Introduction: Environmental enteropathy is an important contributor to childhood malnutrition in the developing world. Chronic exposure to fecal pathogens leads to alteration in intestinal structure and function, resulting in impaired gut immune function, malabsorption, and growth faltering leading to environmental enteropathy.Methods: A community-based intervention study was carried out on children till 24 months of age in Matiari district, Pakistan. Blood and fecal specimens were collected from the enrolled children aged 3-6 and 9 months. A real-time PCR-based TaqMan array card (TAC) was used to detect enteropathogens.Results: Giardia, Campylobacter spp., enteroaggregative Escherichia coli (EAEC), Enteropathogenic Escherichia coli (EPEC), Enterotoxigenic Escherichia coli (ETEC), and Cryptosporidium spp. were the most prevailing enteropathogens in terms of overall positivity at both time points. Detection of protozoa at enrollment and 9 months was negatively correlated with rate of change in height-for-age Z (ΔHAZ) scores during the first and second years of life. A positive association was found between Giardia, fecal lipocalin (LCN), and alpha 1-Acid Glycoprotein (AGP), while Campylobacter spp. showed positive associations with neopterin (NEO) and myeloperoxidase (MPO).Conclusion: Protozoal colonization is associated with a decline in linear growth velocity during the first 2 years of life in children living in Environmental enteric dysfunction (EED) endemic settings. Mechanistic studies exploring the role of cumulative microbial colonization, their adaptations to undernutrition, and their influence on gut homeostasis are required to understand symptomatic enteropathogen-induced growth faltering

    Operationalisation of the Randomized Embedded Multifactorial Adaptive Platform for COVID-19 trials in a low and lower-middle income critical care learning health system

    No full text
    The Randomized Embedded Multifactorial Adaptive Platform (REMAP-CAP) adapted for COVID-19) trial is a global adaptive platform trial of hospitalised patients with COVID-19. We describe implementation in three countries under the umbrella of the Wellcome supported Low and Middle Income Country (LMIC) critical care network: Collaboration for Research, Implementation and Training in Asia (CCA). The collaboration sought to overcome known barriers to multi centre-clinical trials in resource-limited settings. Methods described focused on six aspects of implementation: i, Strengthening an existing community of practice; ii, Remote study site recruitment, training and support; iii, Harmonising the REMAP CAP- COVID trial with existing care processes; iv, Embedding REMAP CAP- COVID case report form into the existing CCA registry platform, v, Context specific adaptation and data management; vi, Alignment with existing pandemic and critical care research in the CCA. Methods described here may enable other LMIC sites to participate as equal partners in international critical care trials of urgent public health importance, both during this pandemic and beyond
    corecore