168 research outputs found

    Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity.

    Get PDF
    The intestinal epithelium forms a barrier between the microbiota and the rest of the body. In addition, beyond acting as a physical barrier, the function of intestinal epithelial cells (IECs) in sensing and responding to microbial signals is increasingly appreciated and likely has numerous implications for the vast network of immune cells within and below the intestinal epithelium. IECs also respond to factors produced by immune cells, and these can regulate IEC barrier function, proliferation and differentiation, as well as influence the composition of the microbiota. The mechanisms involved in IEC-microbe-immune interactions, however, are not fully characterized. In this review, we explore the ability of IECs to direct intestinal homeostasis by orchestrating communication between intestinal microbes and mucosal innate and adaptive immune cells during physiological and inflammatory conditions. We focus primarily on the most recent findings and call attention to the numerous remaining unknowns regarding the complex crosstalk between IECs, the microbiota and intestinal immune cells

    Non-Canonicaly Recruited TCRαβCD8αα IELs Recognize Microbial Antigens

    Get PDF
    In the gut, various subsets of intraepithelial T cells (IELs) respond to self or non-self-antigens derived from the body, diet, commensal and pathogenic microbiota. Dominant subset of IELs in the small intestine are TCRαβCD8αα+ cells, which are derived from immature thymocytes that express self-reactive TCRs. Although most of TCRαβCD8αα+ IELs are thymus-derived, their repertoire adapts to microbial flora. Here, using high throughput TCR sequencing we examined how clonal diversity of TCRαβCD8αα+ IELs changes upon exposure to commensal-derived antigens. We found that fraction of CD8αα+ IELs and CD4+ T cells express identical αβTCRs and this overlap raised parallel to a surge in the diversity of microbial flora. We also found that an opportunistic pathogen (Staphylococcus aureus) isolated from mouse small intestine specifically activated CD8αα+ IELs and CD4+ derived T cell hybridomas suggesting that some of TCRαβCD8αα+ clones with microbial specificities have extrathymic origin. We also report that CD8ααCD4+ IELs and Foxp3CD4+ T cells from the small intestine shared many αβTCRs, regardless whether the later subset was isolated from Foxp3CNS1 sufficient or Foxp3CNS1 deficient mice that lacks peripherally-derived Tregs. Overall, our results imply that repertoire of TCRαβCD8αα+ in small intestine expends in situ in response to changes in microbial flora

    Combination therapy with irinotecan and cisplatin as neoadjuvant chemotherapy in locally advanced cervical cancer

    Get PDF
    To evaluate the response rate and toxicity of the combination of irinotecan (CPT-11) and cisplatin in a neoadjuvant setting, a phase II study was conducted regarding the regimen of this combination in patients with locally advanced cervical cancer. Eligibility included patients with previously untreated stage Ib2, IIb, or IIIb squamous cell carcinoma with good performance status. CPT-11 (60 mg m−2) was administered intravenously on days 1, 8 and 15, followed by cisplatin (60 mg m−2) given intravenously on day 1. Treatment was repeated every 4 weeks for a total of two or three cycles. Among 23 eligible patients (median age: 59 years), three showed complete response (13%), 15 showed partial response (65%), for an overall response rate of 78% (95% confidence interval 58–90%). Stable disease was observed in four cases (17%) and progressive disease in one (4%). The median time to failure and median survival time have not yet been reached. Of the 52 treatment cycles administered, diarrhoea and grade 3 or 4 neutropenia were observed in 10% and 75% respectively. There were no therapy-related deaths. The combination of CPT-11 with cisplatin is a promising regimen for neoadjuvant chemotherapy in locally advanced cervical cancer. The toxicities of this regimen are well tolerated. © 1999 Cancer Research Campaig

    Th17 Cytokines and the Gut Mucosal Barrier

    Get PDF
    Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, γδ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections

    Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness

    Get PDF
    Systemic infection induces conserved physiological responses that include both resistance and ‘tolerance of infection’ mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host’s resources to maintain host–microbial interactions during pathogen-induced stress
    corecore