13 research outputs found

    A fully decentralized control of an amoeboid robot by exploiting the law of conservation of protoplasmic mass

    Get PDF
    2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 19-23, 200

    Fluid-filled Soft-bodied Amoeboid Robot Inspired by Plasmodium of True Slime Mold

    Get PDF
    This paper presents a fluid-filled soft-bodied amoeboid robot inspired by plasmodium of true slime mold. The significant features of this robot are twofold: (1) the robot has fluid circuit (i.e., cylinders and nylon tubes filled with fluid) and truly soft and deformable body stemming from Real-time Tunable Springs (RTSs), the former seals protoplasm to induce global physical interaction between the body parts and the latter is used for elastic actuators; and (2) a fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the global physical interaction between the body parts stemming from the fluid circuit. The experimental results show that this robot exhibits adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design scheme for autonomous decentralized control systems

    A single motor-driven continuum robot that can be designed to deform into a complex shape with curvature distribution

    No full text
    Abstract This paper proposes a method to deform a continuum robot into a complex shape with distributed curvature using a single motor drive. This continuum robot can be deformed to a desired shape by placing tendon guides at appropriate intervals. We used several target shapes, including clothoid and sin curves, as well as a circular curve of constant curvature and confirmed that the deformed shapes match them both in the simulation and prototype. This paper proposes two models of continuum robots. One is the Plain Model in which the tendons are parallel to the rod and the Penetration Model in which the tendon penetrates to the rod. By placing the penetrating position(s), this continuum robot can be deformed into a shape with inflection point(s). We designed a mathematical model to simulate the deformed shape of the prototype to obtain the proper placement of the guides and penetration point(s). Through the optimization, it was able to find the parameters that, in most cases, result in the error of less than 4%4\% 4 % between the target and deformed shapes on simulation. We applied these conditions to the prototype and evaluated the errors, which were approximately 10%10\% 10 % , the same as the related works that use a conventional constant curvature model. We think that the results of this paper can be applied to reduce the number of actuators required and the size and weight of continuum or biomimetic robots

    Movie of the experimental results (mp4) from Gait control in a soft robot by sensing interactions with the environment using self-deformation

    No full text
    All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm <i>Manduca sexta</i>. This robot uses deformations of its body to detect changes in friction force on the substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback

    Processing Code from Gait control in a soft robot by sensing interactions with the environment using self-deformation

    No full text
    All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm <i>Manduca sexta</i>. This robot uses deformations of its body to detect changes in friction force on the substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback

    Movie of the simulation results (mp4) from Gait control in a soft robot by sensing interactions with the environment using self-deformation

    No full text
    All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm <i>Manduca sexta</i>. This robot uses deformations of its body to detect changes in friction force on the substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback
    corecore