235 research outputs found

    The opto-mechanical alignment procedure of the VLT Survey Telescope

    Full text link
    The VLT Survey Telescope is a f/5.5 modified Ritchey-Chretien imaging telescope, which is being installed at the ESO-Paranal Observatory. It will provide a one square degree corrected field of view to perform survey-projects in the wavelength range from UV to I band. In this paper we describe the opto-mechanical alignment procedure of the 2.61m primary mirror, the secondary and correctors lenses onto the mechanical structure of the telescope. The alignment procedure does not rely on the mechanical precision of the mirrors. It will be achieved using ad-hoc alignment tools, described in the paper, which allows the spatial determination of optical axes (and focuses where necessary) of the optical components with respect to the axis defined by the rotation of a laser beam mounted on the instrument bearing.Comment: 10 pages, 10 figures, Proceeding 773357 of the SPIE Conference "Ground-based and Airborne Telescopes III", Sunday 27 June 2010, San Diego, California, US

    Characterization of a Double Mesospheric Bore Over Europe

    Get PDF
    Observations of a pair of mesospheric bore disturbances that propagated through the nighttime mesosphere over Europe are presented. The observations were made at the Padua Observatory, Asiago (45.9\ub0N, 11.5\ub0E), by the Boston University all-sky imager on 11 March 2013. The bores appeared over the northwest horizon, approximately 30 min apart, and propagated toward the southeast. Using additional satellite and radar data, we present evidence indicating the bores originated in the mesosphere from a single, larger-scale mesospheric disturbance propagating through the mesopause region. Furthermore, the large-scale mesospheric disturbance appeared to be associated with an intense weather disturbance that moved southeastward over the United Kingdom and western Europe during 10 and 11 March

    Recovering pyramid WS gain in non-common path aberration correction mode via deformable lens

    Full text link
    It is by now well known that pyramid based wavefront sensors, once in closed loop, have the capability to improve more and more the gain as the reference natural star image size is getting smaller on the pyramid pin. Especially in extreme adaptive optics applications, in order to correct the non-common path aberrations between the scientific and sensing channel, it is common use to inject a certain amount of offset wavefront deformation into the DM(s), departing at the same time the pyramid from the optimal working condition. In this paper we elaborate on the possibility to correct the low order non-common path aberrations at the pyramid wavefront sensor level by means of an adaptive refractive lens placed on the optical path before the pyramid itself, allowing the mitigation of the gain loss

    FrogEye, the Quantum Coronagraphic mask. The Photon Orbital Angular Momentum and its applications to Astronomy

    Full text link
    We propose to realize an optical device based on the properties of photon orbital angular momentum (POAM) to detect the presence of closeby faint companions in double systems using Laguerre-Gaussian (L-G) modes of the light. We test also the possibility of using L-G modes to build coronagraph mask. We realized in the laboratory a prototype using a blazed l=1 hologram to simulate the separation between two stars, as observed with a telescope, in Laguerre-Gaussian modes.Comment: 2 pages, XLIX meeting of the Italian Astronomical Society (SAIT

    A Holographic Diffuser Generalised Optical Differentiation Wavefront Sensor

    Full text link
    The wavefront sensors used today at the biggest World's telescopes have either a high dynamic range or a high sensitivity, and they are subject to a linear trade off between these two parameters. A new class of wavefront sensors, the Generalised Optical Differentiation Wavefront Sensors, has been devised, in a way not to undergo this linear trade off and to decouple the dynamic range from the sensitivity. This new class of WFSs is based on the light filtering in the focal plane from a dedicated amplitude filter, which is a hybrid between a linear filter, whose physical dimension is related to the dynamic range, and a step in the amplitude, whose size is related to the sensitivity. We propose here a possible technical implementation of this kind of WFS, making use of a simple holographic diffuser to diffract part of the light in a ring shape around the pin of a pyramid wavefront sensor. In this way, the undiffracted light reaches the pin of the pyramid, contributing to the high sensitivity regime of the WFS, while the diffused light is giving a sort of static modulation of the pyramid, allowing to have some signal even in high turbulence conditions. The holographic diffuser zeroth order efficiency is strictly related to the sensitivity of the WFS, while the diffusing angle of the diffracted light gives the amount of modulation and thus the dynamic range. By properly choosing these two parameters it is possible to build a WFS with high sensitivity and high dynamic range in a static fashion. Introducing dynamic parts in the setup allows to have a set of different diffuser that can be alternated in front of the pyramid, if the change in the seeing conditions requires it.Comment: 11 pages, 5 figure

    Optical vortices with starlight: Implications for ground-based stellar coronagraphy

    Full text link
    Using an l = 1 blazed fork-hologram at the focal plane of the Asiago 122 cm telescope, we obtained optical vortices from the stellar system Rasalgethi (alpha Herculis) and from the single star Arcturus (alpha Bootis). We have analyzed the structure of the optical vortices obtained from non-monochromatic starlight under very poor seeing conditions using a fast CCD camera to obtain speckle patterns and carry out the lucky imaging technique, alternative to adaptive optics. With the insertion of a red filter and of a Lyot stop we performed l = 1 optical vortex coronography the double star HD74010. The results are in agreement with theory and numerical simulations. Our results open the way to applications of optical vortices to ground based astronomical observations, in particular for coronagraphy with l > 1 masks. No intrinsic orbital angular momentum was detected in the starlight.Comment: 4 pages, 5 figures. Revised data analysi

    Overcoming the Rayleigh Criterion Limit with Optical Vortices

    Full text link
    We experimentally and numerically tested the separability of two independent equally-luminous monochromatic and white light sources at the diffraction limit, using Optical Vortices (OV), related to the Orbital Angular Momentum (OAM) of light. The diffraction pattern of one of the two sources crosses a phase modifying device (fork-hologram) on its center generating the Laguerre-Gaussian (L-G) transform of an Airy disk. The second source, crossing the fork-hologram in positions different from the optical center, acquires different OAM values and generates non-symmetric L-G patterns. We formulated a criterion, based on the asymmetric intensity distribution of the superposed L-G patterns so created, to resolve the two sources at angular distances much below the Rayleigh criterion. Analogous experiments carried out in white light allow angular resolutions which are still one order of magnitude below the Rayleigh criterion. The use OVs might offer new applications for stellar separation in future space experiments.Comment: 4 pages, 5 figure
    • …
    corecore