720 research outputs found

    Low-Energy Scale Excitations in the Spectral Function of Organic Monolayer Systems

    Full text link
    Using high-resolution photoemission spectroscopy we demonstrate that the electronic structure of several organic monolayer systems, in particular 1,4,5,8-naphthalene tetracarboxylic dianhydride and Copper-phtalocyanine on Ag(111), is characterized by a peculiar excitation feature right at the Fermi level. This feature displays a strong temperature dependence and is immediatly connected to the binding energy of the molecular states, determined by the coupling between the molecule and the substrate. At low temperatures, the line-width of this feature, appearing on top of the partly occupied lowest unoccupied molecular orbital of the free molecule, amounts to only ≈25\approx 25 meV, representing an unusually small energy scale for electronic excitations in these systems. We discuss possible origins, related e.g. to many-body excitations in the organic-metal adsorbate system, in particular a generalized Kondo scenario based on the single impurity Anderson model.Comment: 6 pages, 3 figures, accepted as PRB Rapid Communication

    Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring

    Full text link
    We have measured transport through mesoscopic Aharonov-Bohm (AB) rings with two different four-terminal configurations. While the amplitude and the phase of the AB oscillations are well explained within the framework of the Landaur-B\"uttiker formalism, it is found that the probe configuration strongly affects the coherence time of the electrons, i.e., the decoherence is much reduced in the configuration of so-called nonlocal resistance. This result should provide an important clue in clarifying the mechanism of quantum decoherence in solids.Comment: 4 pages, 4 figures, RevTe

    Site-selective adsorption of naphthalene-tetracarboxylic-dianhydride on Ag(110): First-principles calculations

    Full text link
    The mechanism of adsorption of the 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) molecule on the Ag(110) surface is elucidated on the basis of extensive density functional theory calculations. This molecule, together with its perylene counterpart, PTCDA, are archetype organic semiconductors investigated experimentally over the past 20 years. We find that the bonding of the molecule to the substrate is highly site-selective, being determined by electron transfer to the LUMO of the molecule and local electrostatic attraction between negatively charged carboxyl oxygens and positively charged silver atoms in [1-10] atomic rows. The adsorption energy in the most stable site is 0.9eV. A similar mechanism is expected to govern the adsorption of PTCDA on Ag(110) as well.Comment: 8 pages, 4 figures, high-quality figures available upon reques

    On Aharonov-Bohm oscillation in a ferromagnetic ring

    Full text link
    Aharonov-Bohm effect in a ferromagnetic thin ring in diffusive regime is theoretically studied by calculating the Cooperon and Diffuson. In addition to the spin-orbit interaction, we include the spin-wave excitation and the spin splitting, which are expected to be dominant sources of dephasing in ferromagnets at low temperatures. The spin splitting turns out to kill the spin-flip channel of Cooperon but leaves the spin-conserving channel untouched. For the experimental confirmation of interference effect (described by Cooperons) such as weak localization and Aharonov-Bohm oscillation with period h/2eh/2e, we need to suppress the dominant dephasing by orbital motion. To do this we propose experiments on a thin film or thin ring with magnetization and external field perpendicular to the film, in which case the effective field inside the sample is equal to the external field (magnetization does not add up). The field is first applied strong enough to saturate the magnetization and then carrying out the measurement down to zero field keeping the magnetization nearly saturated, in order to avoid domain formations (negative fields may also be investigated if the coercive field is large enough)

    Observation of individual molecules trapped on a nanostructured insulator

    Full text link
    For the first time, ordered polar molecules confined in monolayer-deep rectangular pits produced on an alkali halide surface by electron irradiation have been resolved at room temperature by non-contact atomic force microscopy. Molecules self-assemble in a specific fashion inside pits of width smaller than 15 nm. By contrast no ordered aggregates of molecules are observed on flat terraces. Conclusions regarding nucleation and ordering mechanisms are drawn. Trapping in pits as small as 2 nm opens a route to address single molecules

    Profile scaling in decay of nanostructures

    Full text link
    The flattening of a crystal cone below its roughening transition is studied by means of a step flow model. Numerical and analytical analyses show that the height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter family of solutions for the scaling function, and propose a selection criterion for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure

    Nonuniversal correlations in multiple scattering

    Full text link
    We show that intensity of a wave created by a source embedded inside a three-dimensional disordered medium exhibits a non-universal space-time correlation which depends explicitly on the short-distance properties of disorder, source size, and dynamics of disorder in the immediate neighborhood of the source. This correlation has an infinite spatial range and is long-ranged in time. We suggest that a technique of "diffuse microscopy" might be developed employing spatially-selective sensitivity of the considered correlation to the disorder properties.Comment: 15 pages, 3 postscript figures, accepted to Phys. Rev.

    First experimental proof for aberration correction in XPEEM: Resolution, transmission enhancement, and limitation by space charge effects

    Get PDF
    a b s t r a c t The positive effect of double aberration correction in x-ray induced Photoelectron Emission Microscopy (XPEEM) has been successfully demonstrated for both, the lateral resolution and the transmission, using the Au 4f XPS peak for element specific imaging at a kinetic energy of 113 eV. The lateral resolution is improved by a factor of four, compared to a non-corrected system, whereas the transmission is enhanced by a factor of 5 at a moderate resolution of 80 nm. With an optimized system setting, a lateral resolution of 18 nm could be achieved, which is up to now the best value reported for energy filtered XPEEM imaging. However, the absolute resolution does not yet reach the theoretical limit of 2 nm, which is due to space charge limitation. This occurs along the entire optical axis up to the contrast aperture. In XPEEM the pulsed time structure of the exciting soft x-ray light source causes a short and highly intense electron pulse, which results in an image blurring. In contrast, the imaging with elastically reflected electrons in the low energy electron microscopy (LEEM) mode yields a resolution clearly below 5 nm. Technical solutions to reduce the space charge effect in an aberration-corrected spectro-microscope are discussed

    Evaluational adjectives

    Get PDF
    This paper demarcates a theoretically interesting class of "evaluational adjectives." This class includes predicates expressing various kinds of normative and epistemic evaluation, such as predicates of personal taste, aesthetic adjectives, moral adjectives, and epistemic adjectives, among others. Evaluational adjectives are distinguished, empirically, in exhibiting phenomena such as discourse-oriented use, felicitous embedding under the attitude verb `find', and sorites-susceptibility in the comparative form. A unified degree-based semantics is developed: What distinguishes evaluational adjectives, semantically, is that they denote context-dependent measure functions ("evaluational perspectives")—context-dependent mappings to degrees of taste, beauty, probability, etc., depending on the adjective. This perspective-sensitivity characterizing the class of evaluational adjectives cannot be assimilated to vagueness, sensitivity to an experiencer argument, or multidimensionality; and it cannot be demarcated in terms of pretheoretic notions of subjectivity, common in the literature. I propose that certain diagnostics for "subjective" expressions be analyzed instead in terms of a precisely specified kind of discourse-oriented use of context-sensitive language. I close by applying the account to `find x PRED' ascriptions
    • …
    corecore