21 research outputs found

    Strictly and asymptotically scale-invariant probabilistic models of NN correlated binary random variables having {\em q}--Gaussians as NN\to \infty limiting distributions

    Get PDF
    In order to physically enlighten the relationship between {\it qq--independence} and {\it scale-invariance}, we introduce three types of asymptotically scale-invariant probabilistic models with binary random variables, namely (i) a family, characterized by an index ν=1,2,3,...\nu=1,2,3,..., unifying the Leibnitz triangle (ν=1\nu=1) and the case of independent variables (ν\nu\to\infty); (ii) two slightly different discretizations of qq--Gaussians; (iii) a special family, characterized by the parameter χ\chi, which generalizes the usual case of independent variables (recovered for χ=1/2\chi=1/2). Models (i) and (iii) are in fact strictly scale-invariant. For models (i), we analytically show that the NN \to\infty probability distribution is a qq--Gaussian with q=(ν2)/(ν1)q=(\nu -2)/(\nu-1). Models (ii) approach qq--Gaussians by construction, and we numerically show that they do so with asymptotic scale-invariance. Models (iii), like two other strictly scale-invariant models recently discussed by Hilhorst and Schehr (2007), approach instead limiting distributions which are {\it not} qq--Gaussians. The scenario which emerges is that asymptotic (or even strict) scale-invariance is not sufficient but it might be necessary for having strict (or asymptotic) qq--independence, which, in turn, mandates qq--Gaussian attractors.Comment: The present version is accepted for publication in JSTA

    A note on q-Gaussians and non-Gaussians in statistical mechanics

    Full text link
    The sum of NN sufficiently strongly correlated random variables will not in general be Gaussian distributed in the limit N\to\infty. We revisit examples of sums x that have recently been put forward as instances of variables obeying a q-Gaussian law, that is, one of type (cst)\times[1-(1-q)x^2]^{1/(1-q)}. We show by explicit calculation that the probability distributions in the examples are actually analytically different from q-Gaussians, in spite of numerically resembling them very closely. Although q-Gaussians exhibit many interesting properties, the examples investigated do not support the idea that they play a special role as limit distributions of correlated sums.Comment: 17 pages including 3 figures. Introduction and references expande

    Note on a q-modified central limit theorem

    Full text link
    A q-modified version of the central limit theorem due to Umarov et al. affirms that q-Gaussians are attractors under addition and rescaling of certain classes of strongly correlated random variables. The proof of this theorem rests on a nonlinear q-modified Fourier transform. By exhibiting an invariance property we show that this Fourier transform does not have an inverse. As a consequence, the theorem falls short of achieving its stated goal.Comment: 10 pages, no figure

    Probability densities for the sums of iterates of the sine-circle map in the vicinity of the quasi-periodic edge of chaos

    Full text link
    We investigate the probability density of rescaled sum of iterates of sine-circle map within quasi-periodic route to chaos. When the dynamical system is strongly mixing (i.e., ergodic), standard Central Limit Theorem (CLT) is expected to be valid, but at the edge of chaos where iterates have strong correlations, the standard CLT is not necessarily to be valid anymore. We discuss here the main characteristics of the central limit behavior of deterministic dynamical systems which exhibit quasi-periodic route to chaos. At the golden-mean onset of chaos for the sine-circle map, we numerically verify that the probability density appears to converge to a q-Gaussian with q<1 as the golden mean value is approached.Comment: 7 pages, 7 figures, 1 tabl

    Functional-differential equations for FqF_q%-transforms of qq-Gaussians

    Full text link
    In the paper the question - Is the q-Fourier transform of a q-Gaussian a q'-Gaussian (with some q') up to a constant factor? - is studied for the whole range of q(,3)q\in (-\infty, 3). This question is connected with applicability of the q-Fourier transform in the study of limit processes in nonextensive statistical mechanics. We prove that the answer is affirmative if and only if q > 1, excluding two particular cases of q<1, namely, q = 1/2 and q = 2/3, which are also out of the theory valid for q \ge 1. We also discuss some applications of the q-Fourier transform to nonlinear partial differential equations such as the porous medium equation.Comment: 14 pages A new section on a related solution of the porous medium equation in comparison with the previous version has been introduc

    The q-exponential family in statistical physics

    Full text link
    The notion of generalised exponential family is considered in the restricted context of nonextensive statistical physics. Examples are given of models belonging to this family. In particular, the q-Gaussians are discussed and it is shown that the configurational probability distributions of the microcanonical ensemble belong to the q-exponential family.Comment: 18 pages, 4 figures, proceedings of SigmaPhi 200

    On q-Gaussians and Exchangeability

    Full text link
    The q-Gaussians are discussed from the point of view of variance mixtures of normals and exchangeability. For each q< 3, there is a q-Gaussian distribution that maximizes the Tsallis entropy under suitable constraints. This paper shows that q-Gaussian random variables can be represented as variance mixtures of normals. These variance mixtures of normals are the attractors in central limit theorems for sequences of exchangeable random variables; thereby, providing a possible model that has been extensively studied in probability theory. The formulation provided has the additional advantage of yielding process versions which are naturally q-Brownian motions. Explicit mixing distributions for q-Gaussians should facilitate applications to areas such as option pricing. The model might provide insight into the study of superstatistics.Comment: 14 page

    Nonadditive entropy and nonextensive statistical mechanics - Some central concepts and recent applications

    Full text link
    We briefly review central concepts concerning nonextensive statistical mechanics, based on the nonadditive entropy Sq=k1ipiqq1(qR;S1=kipilnpi)S_q=k\frac{1-\sum_{i}p_i^q}{q-1} (q \in {\cal R}; S_1=-k\sum_{i}p_i \ln p_i). Among others, we focus on possible realizations of the qq-generalized Central Limit Theorem, including at the edge of chaos of the logistic map, and for quasi-stationary states of many-body long-range-interacting Hamiltonian systems.Comment: 15 pages, 9 figs., to appear in Journal of Physics: Conf.Series (IOP, 2010

    Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example

    Full text link
    Extremization of the Boltzmann-Gibbs (BG) entropy under appropriate norm and width constraints yields the Gaussian distribution. Also, the basic solutions of the standard Fokker-Planck (FP) equation (related to the Langevin equation with additive noise), as well as the Central Limit Theorem attractors, are Gaussians. The simplest stochastic model with such features is N to infinity independent binary random variables, as first proved by de Moivre and Laplace. What happens for strongly correlated random variables? Such correlations are often present in physical situations as e.g. systems with long range interactions or memory. Frequently q-Gaussians become observed. This is typically so if the Langevin equation includes multiplicative noise, or the FP equation to be nonlinear. Scale-invariance, i.e. exchangeable binary stochastic processes, allow a systematical analysis of the relation between correlations and non-Gaussian distributions. In particular, a generalized stochastic model yielding q-Gaussians for all q (including q>1) was missing. This is achieved here by using the Laplace-de Finetti representation theorem, which embodies strict scale-invariance of interchangeable random variables. We demonstrate that strict scale invariance together with q-Gaussianity mandates the associated extensive entropy to be BG.Comment: 6 pages, 1 fig, to appear in EPJ

    Deviation from Gaussianity in the cosmic microwave background temperature fluctuations

    Get PDF
    Recent measurements of the temperature fluctuations of the cosmic microwave background (CMB) radiation from the WMAP satellite provide indication of a non-Gaussian behavior. Although the observed feature is small, it is detectable and analyzable. Indeed, the temperature distribution P^{CMB}(Delta T) of these data can be quite well fitted by the anomalous probability distribution emerging within nonextensive statistical mechanics, based on the entropy S_q = k (1 - \int dx [P(x)]^q)/(q - 1) (where in the limit case q -> 1 we obtain the Boltzmann-Gibbs entropy S_1 = - k \int dx P(x) ln[P(x)]). For the CMB frequencies analysed, \nu= 40.7, 60.8, and 93.5 GHz, P^{CMB}(Delta T) is well described by P_q(Delta T) \propto 1/[1 + (q-1) B(\nu) (Delta T)^2]^{1/(q-1)}, with q = 1.04 \pm 0.01, the strongest non-Gaussian contribution coming from the South-East sector of the celestial sphere. Moreover, Monte Carlo simulations exclude, at the 99% confidence level, P_1(Delta T) \propto e^{- B(\nu) (Delta T)^2} to fit the three-year WMAP data.Comment: 6 pages, 1 figur
    corecore