855 research outputs found

    The origin of the radio emission from beta Lyrae

    Full text link
    In this paper we present new observational evidence that supports the presence of an extra source of continuum emission in the binary system beta Lyrae. New VLA and IRAM observations, together with published data from the literature and ISO archive data, allow us to build the Spectral Energy Distribution of the binary between 5x10^9 Hz and 5x10^15Hz. The radio-millimeter part of the spectrum is consistent with free-free emission from a symbiotic-like wind associated with the primary component and ionized by the radiation field of the hidden companion. Furthermore, we also consider the possibility that the observed radio flux originates from collimated radio structures associated with the mass gaining component and its disk (Conical thermal jets). An extrapolation of this emission to the far-IR part of the spectrum indicates that in both cases the free-free contribution at these frequencies cannot explain the observations and that the observed infrared excess flux is due principally to the secondary component and its associated disk.Comment: 8 pages, 3 figures, A&A in pres

    A three-dimensional model for the radio emission of magnetic chemically peculiar stars

    Get PDF
    In this paper we present a three-dimensional numerical model for the radio emission of Magnetic Chemically Peculiar stars, on the hypothesis that energetic electrons emit by the gyrosynchrotron mechanism. For this class of radio stars, characterized by a mainly dipolar magnetic field whose axis is tilted with respect to the rotational axis, the geometry of the magnetosphere and its deformation due to the stellar rotation are determined. The radio emitting region is determined by the physical conditions of the magnetosphere and of the stellar wind. Free-free absorption by the thermal plasma trapped in the inner magnetosphere is also considered. Several free parameters are involved in the model, such as the size of the emitting region, the energy spectrum and the number density of the emitting electrons, and the characteristics of the plasma in the inner magnetosphere. By solving the equation of radiative transfer, along a path parallel to the line of sight, the radio brightness distribution and the total flux density as a function of stellar rotation are computed. As the model is applied to simulate the observed 5 GHz lightcurves of HD37479 and HD37017, several possible magnetosphere configurations are found. After simulations at other frequencies, in spite of the large number of parameters involved in the modeling, two solutions in the case of HD37479 and only one solution in the case of HD37017 match the observed spectral indices. The results of our simulations agree with the magnetically confined wind-shock model in a rotating magnetosphere. The X-ray emission from the inner magnetosphere is also computed, and found to be consistent with the observations.Comment: 15 pages, 10 figures, A&A in pres

    Radio continuum properties of young planetary nebulae

    Get PDF
    We have selected a small sample of post-AGB stars in transition towards the planetary nebula and present new Very Large Array multi-frequency high-angular resolution radio observations of them. The multi-frequency data are used to create and model the targets' radio continuum spectra, proving that these stars started their evolution as very young planetary nebulae. In the optically thin range, the slopes are compatible with the expected spectral index (-0.1). Two targets (IRAS 18062+2410 and 17423-1755) seem to be optically thick even at high frequency, as observed in a handful of other post-AGB stars in the literature, while a third one (IRAS 20462+3416) shows a possible contribution from cold dust. In IRAS 18062+2410, where we have three observations spanning a period of four years, we detect an increase in its flux density, similar to that observed in CRL 618. High-angular resolution imaging shows bipolar structures that may be due to circumstellar tori, although a different hypothesis (i.e., jets) could also explain the observations. Further observations and monitoring of these sources will enable us to test the current evolutionary models of planetary nebulae.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    VISIR/VLT and VLA joint imaging analysis of the circumstellar nebula around IRAS~18576+0341

    Get PDF
    High spatial and sensitivity images of the Luminous Blue Variable IRAS 18576+0341 were obtained using the mid infrared imager VISIR at the Very Large Telescope and the Very Large Array interferometer. The resulting mid-infrared continuum maps show a similar clumpy and approximately circular symmetric nebula, which contrasts sharply with the asymmetry that characterizes the ionized component of the envelope, as evidenced from the radio and [Ne II] line images obtained with comparable spatial resolution. In particular, there is excellent overall agreement between the 12.8 micron map and the radio images, consistent with free-free emission from circumstellar ionized material surrounding a central stellar wind. The color temperature and optical depth maps obtained from mid-infrared images show only slight fluctuations, suggesting quite uniform dust characteristics over the dust shell. We explore various possibilities to understand the cause of the different morphology of the dusty and gaseous component of the circumstellar envelope which are compatible with the observations.Comment: 26 pages, 8 figures. Accepted for publication in The Astrophysical Journa

    3D-modelling of the stellar auroral radio emission

    Get PDF
    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of the coherent pulses, and to learn more about the detectability of such kind of pulsed radio emission.Comment: 11 pages, 8 figures; accepted for publication in MNRA
    • …
    corecore