38 research outputs found

    Planetesimal formation by the streaming instability in a photoevaporating disk

    Full text link
    Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60-130 MM_\oplus) planetesimal belts beyond 100 au and up to 20M\sim 20 M_\oplus of planetesimals in the middle regions (3-100 au). Our most comprehensive model forms 8 MM_\oplus of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet forming regions of protoplanetary disks.Comment: 20 pages, 12 figures; accepted to Ap

    Protostellar disks subject to infall: a one-dimensional inviscid model and comparison with ALMA observations

    Full text link
    A new one-dimensional, inviscid, and vertically integrated disk model with prescribed infall is presented. The flow is computed using a second-order shock-capturing scheme. Included are vertical infall, radial infall at the outer radial boundary, radiative cooling, stellar irradiation, and heat addition at the disk-surface shock. Simulation parameters are chosen to target the L1527 IRS disk which has been observed using ALMA (Atacama Large Millimeter Array). The results give an outer envelope of radial infall and uϕ1/ru_\phi \propto 1/r which encounters a radial shock at rshock1.5 ×r_\mathrm{shock} \sim 1.5\ \times the centrifugal radius (rcr_\mathrm{c}) across which the radial velocity is greatly reduced and the gas temperature rises from a pre-shock value of 25\approx 25 K to 180\approx 180 K over a spatially thin region calculated using a separate shock structure code. At rcr_\mathrm{c}, the azimuthal velocity uϕu_\phi transitions from being 1/r\propto 1/r to being nearly Keplerian. These results qualitatively agree with recent ALMA observations which indicate a radial shock where SO is sublimated as well as a transition from a uϕ1/ru_\phi \sim 1/r region to a Keplerian inner disk. However, in one set of observations, the position-velocity map of cyclic-C3_3H2_2, together with a certain ballistic maximum velocity relation, has suggested that the radial shock coincides with a ballistic centrifugal barrier, which places the shock at rshock=0.5rcr_\mathrm{shock} = 0.5 r_\mathrm{c}, i.e, inward of rcr_\mathrm{c}, rather than outward as given by our simulations. It is argued that radial velocity plots from previous magnetic rotating-collapse simulations also indicate that the radial shock is located outward of rcr_\mathrm{c}. The discrepancy with observations is analyzed and discussed, but remains unresolved.Comment: Originally, we incorrectly took Semenov etal. opacities to be m2^2 per gm of dust rather than gas. Thus our opacities were too low by a factor of 100. Making the correction reduced the temperature across the shock but left velocities and densities nearly unchanged. To account for SO sublimation in L1527 observed by ALMA, we performed a separate 1D shock calculation including non-LTE effect

    Debris Disks in the Scorpius-Centaurus OB Association Resolved by ALMA

    Get PDF
    We present a CO(2-1) and 1240 um continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.5-1 arcsec with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ~10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3-sigma) CO detections. Twenty disks were detected in the continuum at the >3-sigma level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broad-band spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.Comment: 16 pages, 6 figures, accepted for publication in Ap

    Understanding the origin of the [OI] low-velocity component from T Tauri stars

    Get PDF
    The formation time, masses, and location of planets are strongly impacted by the physical mechanisms that disperse protoplanetary disks and the timescale over which protoplanetary material is cleared out. Accretion of matter onto the central star, protostellar winds/jets, magnetic disk winds, and photoevaporative winds operate concurrently. Hence, disentangling their relative contribution to disk dispersal requires identifying diagnostics that trace different star–disk environments. Here, we analyze the low-velocity component (LVC) of the oxygen optical forbidden lines, which is found to be blueshifted by a few km s−1 with respect to the stellar velocity. We find that the [O i] LVC profiles are different from those of [Ne ii] at 12.81μm and CO at 4.7μm lines pointing to different origins for these gas lines. We report a correlation between the luminosity of the [O i] LVC and the accretion luminosity Lacc. We do not find any correlation with the X-ray luminosity, while we find that the higher is the stellar far-UV (FUV) luminosity, the higher is the luminosity of the [O i] LVC. In addition, we show that the [O i] λ6300/λ5577 ratio is low (ranging between 1 and 8). These findings favor an origin of the [O i] LVC in a region where OH is photodissociated by stellar FUV photons and argue against thermal emission from an X-ray-heated layer. Detailed modeling of two spectra with the highest S/N and resolution shows that there are two components within the LVC: a broad, centrally peaked component that can be attributed to gas arising in a warm disk surface in Keplerian rotation (with FWHM between ∼40 and ∼60 km s−1), and a narrow component (with FWHM ∼ 10 km s−1 and small blueshifts of ∼2 km s−1) that may arise in a cool (1000 K) molecular wind

    Kinematic Links and the Coevolution of MHD Winds, Jets, and Inner Disks from a High-resolution Optical [OI] Survey

    Get PDF
    We present a survey of optical [O I] emission at 6300 Å toward 65 T Tauri stars at the spectral resolution of ∼7 km s−1 . Past work identified a highly blueshifted velocity component (HVC) tracing microjets and a less blueshifted low-velocity component (LVC) attributed to winds. We focus here on the LVC kinematics to investigate links between winds, jets, accretion, and disk dispersal. We track the behavior of four types of LVC components: a broad and a narrow component (“BC” and “NC,” respectively) in LVCs that are decomposed into two Gaussians which typically have an HVC, and single-Gaussian LVC profiles separated into those that have an HVC (“SCJ”) and those that do not (“SC”). The LVC centroid velocities and line widths correlate with the HVC EW and accretion luminosity, suggesting that LVC/winds and HVC/jets are kinematically linked and connected to accretion. The deprojected HVC velocity correlates with accretion luminosity, showing that faster jets come with higher accretion. BC and NC kinematics correlate, and their blueshifts are maximum at ∼35°, suggesting a conical wind geometry with this semi-opening angle. Only SCs include n13–31 up to ∼3, and their properties correlate with this infrared index, showing that [O I] emission recedes to larger radii as the inner dust is depleted, tracing less dense/hot gas and a decrease in wind velocity. Altogether, these findings support a scenario where optically thick, accreting inner disks launch radially extended MHD disk winds that feed jets, and where inner disk winds recede to larger radii and jets disappear in concert with dust depletion

    A New Look at T Tauri Star Forbidden Lines: MHD Driven Winds from the Inner Disk

    Get PDF
    Magnetohydrodynamic (MHD) and photoevaporative winds are thought to play an important role in the evolution and dispersal of planet-forming disks. We report the first high-resolution (Δv\Delta v\sim6\kms) analysis of [S II] λ\lambda4068, [O I] λ\lambda5577, and [O I] λ\lambda6300 lines from a sample of 48 T Tauri stars. Following Simon et al. (2016), we decompose them into three kinematic components: a high-velocity component (HVC) associated with jets, and a low-velocity narrow (LVC-NC) and broad (LVC-BC) components. We confirm previous findings that many LVCs are blueshifted by more than 1.5 kms1^{-1} thus most likely trace a slow disk wind. We further show that the profiles of individual components are similar in the three lines. We find that most LVC-BC and NC line ratios are explained by thermally excited gas with temperatures between 5,000-10,000 K and electron densities 107108\sim10^{7}-10^{8} cm3^{-3}. The HVC ratios are better reproduced by shock models with a pre-shock H number density of 106107\sim10^{6}-10^{7} cm3^{-3}. Using these physical properties, we estimate M˙wind/M˙acc\dot{M}_{\rm wind}/\dot{M}_{\rm acc} for the LVC and M˙jet/M˙acc\dot{M}_{\rm jet}/\dot{M}_{\rm acc} for the HVC. In agreement with previous work, the mass carried out in jets is modest compared to the accretion rate. With the likely assumption that the NC wind height is larger than the BC, the LVC-BC M˙wind/M˙acc\dot{M}_{\rm wind}/\dot{M}_{\rm acc} is found to be higher than the LVC-NC. These results suggest that most of the mass loss occurs close to the central star, within a few au, through an MHD driven wind. Depending on the wind height, MHD winds might play a major role in the evolution of the disk mass.Comment: 45 pages, 23 figures, and 7 tables, accepted by Ap

    A High-resolution Optical Survey of Upper Sco: Evidence for Coevolution of Accretion and Disk Winds

    Full text link
    Magnetohydrodynamic (MHD) and photoevaporative winds are thought to play an important role in the evolution and dispersal of planet-forming disks. Here, we analyze high-resolution (Δv\Delta v \sim 7 kms1^{-1}) optical spectra from a sample of 115 T Tauri stars in the 510\sim 5-10 Myr Upper Sco association and focus on the [O I]λ\lambda6300 and Hα\alpha lines to trace disk winds and accretion, respectively. Our sample covers a large range in spectral type and we divide it into Warm (G0-M3) and Cool (later than M3) to facilitate comparison with younger regions. We detect the [O I]λ\lambda6300 line in 45 out of 87 upper sco sources with protoplanetary disks and 32 out of 45 are accreting based on Hα\alpha profiles and equivalent widths. All [O I] λ\lambda6300 Upper Sco profiles have a low-velocity (centroid <30< -30 kms1^{-1}, LVC) emission and most (36/45) can be fit by a single Gaussian (SC). The SC distribution of centroid velocities and FWHMs is consistent with MHD disk winds. We also find that the Upper Sco sample follows the same accretion luminosity-LVC [O I]λ\lambda6300 luminosity relation and the same anti-correlation between SC FWHM and WISE W3-W4 spectral index as the younger samples. These results indicate that accretion and disk winds coevolve and that, as inner disks clear out, wind emission arises further away from the star. Finally, our large spectral range coverage reveals that Cool stars have larger FWHMs normalized by stellar mass than Warm stars indicating that [O I]λ\lambda6300 emission arises closer in towards lower mass/lower luminosity stars.Comment: 47 pages, 32 figures; ApJ accepte
    corecore