7 research outputs found

    A field study evaluating the humoral immune response in Mongolian sheep vaccinated against sheeppox virus

    Get PDF
    Sheeppox is a transboundary disease of sheep caused by infection with the capripoxvirus sheeppox virus (SPPV). Sheeppox is found in Africa, the Middle East and Asia and is characterised by fever, multifocal cutaneous raised lesions, and death, with substantial negative impact on affected flocks. Vaccination with live attenuated capripoxvirus (CPPV) strains is an effective and widely used means of controlling sheeppox outbreaks, however there are few reports of post-vaccination field surveillance studies of sheeppox. This study used a commercially available ELISA and a fluorescence-based neutralisation assay (FVNT) to examine quantitative and temporal features of the humoral response of sheep vaccinated with a live attenuated CPPV strain in Mongolia. 400 samples were tested using the ELISA, and a subset of 45 also tested with the FVNT. There was substantial agreement between the FVNT and ELISA tests. Antibodies to CPPV were detected between 40 and 262 days post vaccination. There was no significant difference between serological status (positive / negative) and sex or age, however an inverse correlation was found between the length of time since vaccination and serological status. Animals between 90 and 180 days post-vaccination were more likely to be positive than animals greater than 180 days post vaccination. This data provides temporal parameters to consider when planning sheeppox post-vaccination monitoring programmes. In summary, our results show a commercial CPPV ELISA kit is a robust and reliable assay for use in resource-restricted low and low-middle income countries for post CPPV vaccination surveillance on a regional or national level.The attached .xls file contains all raw data used in the associated publication, " A comparative serological field study evaluating the humoral immune response in Mongolian sheep vaccinated against sheeppox virus." The dataset identifies all individual sheep by a unique identification number (ID_num). Each unique ID_num is associated with relevant metadata: Province name, Sum name, herder name coded (Herded_Id), animal species, age of the animal, in years, when sampled (Age), sex of the animal "F" or "M" (Sex), date when the animal was sampled (Date_sample_collected), date when the animal was vaccinated for sheeppox according to the vaccination records (Date_vaccinated_raw data), and for samples in which the exact date of vaccination was not available and a range of potential time was given, the midpoint date within this range (Date_vaccinated_midpoint), animals for which vaccination date was not available receive an "NA" value; time from vaccination to sampled in days (Time_from_vaccinated_midpoint); %S/P values for the ELISA test conducted in the Mongolia lab (Ag_ELISA_SCVL_OD_SP) and %S/P values for the ELISA test conducted in the UK lab (Ag_ELISA_TPI_OD_SP), results from the ELISA test classified as binary variable "Positive" or "Negative" (Ag_ELISA_SCVL_bin and Ag_ELISA_TPI_bin); titres from the fluorescence-based neutralisation assay (FVNT Titre) and results from the FVNT test classified as binary variable ("Positive" or "Negative"), all animals that were not tested by FVNT receive an "NA" value in these columns. Funding provided by: Biotechnology and Biological Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BBS/E/I/00007031Funding provided by: Biotechnology and Biological Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BB/E/I/00007036Funding provided by: Biotechnology and Biological Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BB/E/I/00007037Funding provided by: Biotechnology and Biological Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BBS/E/I/00007039Funding provided by: Biotechnology and Biological Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BB/J004324/1Funding provided by: Biotechnology and Biological Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BBS/E/D/20002173Funding provided by: Horizon 2020Crossref Funder Registry ID: http://dx.doi.org/10.13039/501100007601Award Number: 773701Funding provided by: Food and Agriculture Organization of the United Nations*Crossref Funder Registry ID: Award Number: TCP/MON/3603Funding provided by: IdVet*Crossref Funder Registry ID: Award Number: Funding provided by: Food and Agriculture Organization of the United NationsCrossref Funder Registry ID: Award Number: TCP/MON/3603Funding provided by: IdVetCrossref Funder Registry ID:Blood samples from sheep and associated data were collected as part of the post-vaccination surveillance programme for sheeppox implemented by the Mongolian General Authority for Veterinary Services (GAVS) in 2016

    Socio-economic impact of Foot-and-Mouth Disease outbreaks and control measures:An analysis of Mongolian outbreaks in 2017

    Get PDF
    Mongolia is a large landlocked country in central Asia and has one of the highest per capita livestock ratios in the world. During 2017 reported Foot and Mouth disease (FMD) outbreaks in Mongolia increased considerably, prompting widespread disease control measures. This study estimates the socio‐economic impact of FMD and subsequent control measures on Mongolian herders. The analysis encompassed quantification of the impact on subsistence farmers’ livelihoods and food security and estimation of the national level gross losses due to reaction and expenditure during 2017. Data were collected from 112 herders across eight Provinces that reported disease. Seventy of these herders had cases of FMD, while 42 did not have FMD in their animals but were within quarantine zones. Overall, 86/112 herders reported not drinking milk for a period of time and 38/112 reduced their meat consumption. Furthermore, 55 herders (49.1%) had to borrow money to buy food, medicines and/or pay bills or bank loans. Among herders with FMD cases, the median attack rate was 31.7%, 3.8% and 0.59% in cattle, sheep and goats respectively, with important differences across Provinces. Herders with clinical cases before the winter had higher odds of reporting a reduction in their meat consumption. National level gross losses due to FMD in 2017 were estimated using government data. The estimate of gross economic loss was 18.4 billion Mongolian‐tugriks (US$7.35 million) which equates to approximately 0.65% of the Mongolian GDP. The FMD outbreaks combined with current control measures has negatively impacted herders’ livelihoods (including herders with and without cases of FMD) which is likely to reduce stakeholder advocacy. Possible strategies that could be employed to ameliorate the negative effects of the current control policy were identified. The findings and approach are relevant to other FMD endemic regions aiming to control the disease

    Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa

    Get PDF
    Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.</p

    Comparison of vaccination schedules for foot-and-mouth disease among cattle and sheep in Mongolia

    Get PDF
    Vaccines are a critical tool for the control strategy for foot-and-mouth disease (FMD) in Mongolia where sporadic outbreaks regularly occur. A two-dose primary vaccination course is recommended for most commercial vaccines though this can be logistically challenging to deliver among nomadic pastoralist systems which predominate in the country. Although there is evidence that very high potency vaccines can provide prolonged duration of immunity, this has not been demonstrated under field conditions using commercially available vaccines. This study compared neutralizing titres to a O/ME-SA/Panasia strain over a 6-month period following either a two-dose primary course or a single double-dose vaccination among Mongolian sheep and cattle using a 6.0 PD50 vaccine. Titers were not significantly different between groups except in sheep at six-months post vaccination when the single double-dose group had significantly lower titers. These results indicate the single double-dose regimen may be a cost-effective approach for vaccination campaigns supporting FMD control in Mongolia

    Comparison of the Whole-Genome Sequence of the African Swine Fever Virus from a Mongolian Wild Boar with Genotype II Viruses from Asia and Europe

    No full text
    African swine fever (ASF) is a highly contagious and severe viral hemorrhagic disease in domestic and wild pigs. ASF seriously affects the global swine industry as the mortality rate can reach 100% with highly virulent strains. In 2007, ASF was introduced into the Caucasus and spread to Russia and later into other European and Asian countries. This study reported the first whole-genome sequence (WGS) of the ASF virus (ASFV) that was detected in a Mongolian wild boar. This sequence was then compared to other WGS samples from Asia and Europe. Results show that the ASFV Genotype II from Mongolia is similar to the Asian Genotype II WGS. However, there were three nucleotide differences found between the Asian and European genome sequences, two of which were non-synonymous. It was also observed that the European Genotype II ASFV WGS was more diverse than that of the Asian counterparts. The study demonstrates that the ASFV Genotype II variants found in wild boars and domestic pigs are highly similar, suggesting these animals might have had direct or indirect contact, potentially through outdoor animal breeding. In conclusion, this study provides a WGS and mutation spectrum of the ASFV Genotype II WGS in Asia and Europe and thus provides important insights into the origin and spread of ASFV in Mongolia

    Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa

    No full text
    Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples (“Neethling-like” clade 1.1 and “Kenya-like” subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies

    Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa

    No full text
    Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples (“Neethling-like” clade 1.1 and “Kenya-like” subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies
    corecore