6 research outputs found

    Modelling future flood risks for inland and coastal adaptation planning

    Get PDF
    Floods have historically threatened human and natural systems and the risk they represent is likely to be affected by climate variability and change over the next century. With rising sea levels putting further pressure on low-lying regions, there is a need for a catchment-to-coast understanding of flooding hazard to inform on potential anticipatory measures. Computational flood modelling advances offer opportunities to better support decision-making on flood risk management. While adaptation is increasingly recognised as needed in the face of climatic changes, the implementation of adequate solutions has faced fundamental barriers. This has led to a call for integrated assessments of flood risk that adopt a holistic approach in the depiction of physical flooding processes and engage with local stakeholder knowledge. Britain’s largest protected wetland – the Broads – and its neighbouring coast, were chosen as a study site to assess future flood risk and stakeholder-defined adaptation measures. A 1D-2D hydraulic model was developed in HEC-RAS to simulate flooding impacts under 21st -century scenarios of extreme sea level, extreme river discharge and for combined events, based on UK Climate Projections (UKCP18). The model was designed iteratively, engaging with local perspectives of flood risk and adaptation, notably during a scientist-stakeholder workshop. The results highlighted the area’s sensitivity to different rates of sea level rise, with inundation extent increasing by 15-135% and river saline incursions up to 30 km inland by 2080. While highly unlikely, combined events were found to exacerbate flooded area by 5-40% and average depth by 1-32%. Stakeholders showed a willingness to act on these threats and deviate from current practices, favouring a protective strategy based on a tidal barrier or storage areas. This research shows the potential for integrated modelling approaches to create an interface for science and practice, producing usable information for decision-makers and thereby promoting action on adaptatio

    “We can’t do it on our own!”—Integrating stakeholder and scientific knowledge of future flood risk to inform climate change adaptation planning in a coastal region

    Get PDF
    Decision-makers face a particular challenge in planning for climate adaptation. The complexity of climate change's likely impacts, such as increased flooding, has widened the scope of information necessary to take action. This is particularly the case in valuable low-lying coastal regions, which host many competing interests, and where there is a growing need to draw from varied fields in the risk-based management of flooding. The rising scrutiny over science's ability to match expectations of policy actors has called for the integration of stakeholder and scientific knowledge domains. Focusing on the Broads — the United Kingdom's largest protected wetland — this study looked to assess future flood risk and consider potential adaptation responses in a collaborative approach. Interviews and surveys with local stakeholders accompanied the development of a hydraulic model in an iterative participatory design, centred on a scientist-stakeholder workshop. Knowledge and perspectives were shared on processes driving risk in the Broads, as well as on the implications of adaptation measures, allowing for their prioritisation. The research outcomes highlight not only the challenges that scientist-stakeholder integrated assessments of future flood risk face, but also their potential to lead to the production of useful information for decision-making

    Quantifying future changes of flood hazards within the Broadland catchment in the UK

    Get PDF
    Flooding represents the greatest natural threat to the UK, presenting severe risk to populations along coastlines and floodplains through extreme tidal surge and hydrometeorological events. Climate change is projected to significantly elevate flood risk through increased severity and frequency of occurrences, which will be exacerbated by external drivers of risk such as property development and population growth throughout floodplains. This investigation explores the entire flood hazard modelling chain, utilising the nonparametric bias correction of UKCP18 regional climate projections, the distributed HBV-TYN hydrological model and HEC-RAS hydraulic model to assess future manifestation of flood hazard within the Broadland Catchment, UK. When assessing the independent impact of extreme river discharge and storm surge events as well as the impact of a compound event of the two along a high emission scenario, exponential increases in hazard extent over time were observed. The flood extent increases from 197 km2 in 1990 to 200 km2 in 2030, and 208 km2 in 2070. In parallel, exponential population exposure increases were found from 13,917 (1990) to 14,088 (2030) to 18,785 (2070). This methodology could see integration into policy-based flood risk management by use of the developed hazard modelling tool for future planning and suitability of existing infrastructure at a catchment scale

    An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change

    Get PDF
    Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding

    Recreating the California New Year's Flood Event of 1997 in a Regionally Refined Earth System Model

    Get PDF
    Abstract The 1997 New Year's flood event was the most costly in California's history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM‐E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California‐focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time‐series and causal analysis frameworks are used to examine runoff sensitivities state‐wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time‐series shape, than forecast lead time, 2‐to‐4 days prior to the 1997 flood onset
    corecore