79 research outputs found

    How are “Atypical” Sulfite Dehydrogenases Linked to Cell Metabolism? Interactions between the SorT Sulfite Dehydrogenase and Small Redox Proteins

    Get PDF
    Sulfite dehydrogenases (SDHs) are enzymes that catalyze the oxidation of the toxic and mutagenic compound sulfite to sulfate, thereby protecting cells from adverse effects associated with sulfite exposure. While some bacterial SDHs that have been characterized to date are able to use cytochrome c as an electron acceptor, the majority of these enzymes prefer ferricyanide as an electron acceptor and have therefore been termed “atypical” SDHs. Identifying the natural electron acceptor of these enzymes, however, is crucial for understanding how the “atypical” SDHs are integrated into cell metabolism. The SorT sulfite dehydrogenase from Sinorhizobium meliloti is a representative of this enzyme type and we have investigated the interactions of SorT with two small redox proteins, a cytochrome c and a Cu containing pseudoazurin, that are encoded in the same operon and are co-transcribed with the sorT gene. Both potential acceptor proteins have been purified and characterized in terms of their biochemical and electrochemical properties, and interactions and enzymatic studies with both the purified SorT sulfite dehydrogenase and components of the respiratory chain have been carried out. We were able to show for the first time that an “atypical” sulfite dehydrogenase can couple efficiently to a cytochrome c isolated from the same organism despite being unable to efficiently reduce horse heart cytochrome c, however, at present the role of the pseudoazurin in SorT electron transfer is unclear, but it is possible that it acts as an intermediate electron shuttle between. The SorT system appears to couple directly to the respiratory chain, most likely to a cytochrome oxidase

    Cultivation of Photosynthetic Bacteria Using Vertical-Cavity Surface-Emitting Lasers

    Get PDF
    We present for the first time experimental results demonstrating the cultivation of photosynthetic microorganisms using laser light. The demonstrated efficiency of the laser source opens the possibility of designing small-scale, energy efficient, compact photobioreactors

    Metabolic analyses reveal common adaptations in two invasive Haemophilus influenzae strains

    Get PDF
    Non-typeable Haemophilus influenzae (NTHi) is a major pathogen in upper and lower respiratory tract infections in humans, and is increasingly also associated with invasive disease. We have examined two unrelated NTHi invasive disease isolates, R2866 and C188, in order to identify metabolic and physiological properties that distinguish them from respiratory tract disease isolates such as Hi2019. While the general use of the Hi metabolic network was similar across all three strains, the two invasive isolates secreted increased amounts of succinate which can have anti-inflammatory properties. In addition, they showed a common shift in their carbon source utilization patterns, with strongly enhanced metabolism of nucleoside substrates, glucose and sialic acid. The latter two are major compounds present in blood and CSF. Interestingly, C188 and R2866 also shared a reduced ability to invade or survive intracellularly in 16HBE14 bronchial epithelial cells relative to Hi2019 (4-fold (4 h), 25-fold (24 h) reduction). Altered metabolic properties such as the ones observed here could arise from genomic adaptations that NTHi undergo during infection. Together these data indicate that shifts in substrate preferences in otherwise conserved metabolic pathways may underlie strain niche specificity and thus have the potential to alter the outcomes of host-NTHi interactions

    Bioelectrocatalysis of sulfite dehydrogenase from Sinorhizobium meliloti with its physiological cytochrome electron partner

    Get PDF
    We demonstrate electrochemically driven catalytic voltammetry of the Mo-dependent sulfite dehydrogenase (SorT) from the α-Proteobacterium Sinorhizobium meliloti with its physiological electron acceptor, the c-type cytochrome (SorU), with both proteins co-adsorbed on a chemically modified Au working electrode. Both SorT and SorU were constrained under a perm-selective dialysis membrane with the biopolymer chitosan as a co-adsorbate, while the electrode was modified with a 3-mercaptopropionate self-assembled monolayer cast on the Au electrode. Cyclic voltammetry of the SorU protein reveals a well-defined quasireversible Fe redox couple at +130 mV versus NHE in 100 mM phosphate buffer solution (pH 7.0). Introduction of wild-type sulfite dehydrogenase (SorT) and sulfite transforms this transient SorU voltammetric response into a sigmoidal catalytic wave, which increases with sulfite concentration before eventually saturating. In addition to the wild-type enzyme, the variants SorT, SorT, and SorT were also examined electrochemically in an effort to better understand the role of amino acid residue Arg78, which is in the vicinity of the Mo active site of SorT

    Control of Bacterial Sulfite Detoxification by Conserved and Species-Specific Regulatory Circuits

    Get PDF
    Although sulfite, a by-product of the degradation of many sulfur compounds, is highly reactive and can cause damage to DNA, proteins and lipids, comparatively little is known about the regulation of sulfite-oxidizing enzyme (SOEs) expression. Here we have investigated the regulation of SOE-encoding genes in two species of α-Proteobacteria, Sinorhizobium meliloti and Starkeya novella, that degrade organo- and inorganic sulfur compounds, respectively, and contain unrelated types of SOEs that show different expression patterns. Our work revealed that in both cases, the molecular signal that triggers SOE gene expression is sulfite, and strong up-regulation depends on the presence of a sulfite-responsive, cognate Extracytoplasmic function (ECF) sigma factor, making sulfite oxidation a bacterial stress response. An additional RpoE1-like ECF sigma factor was also involved in the regulation, but was activated by different molecular signals, taurine (Sm) and tetrathionate (Sn), respectively, targeted different gene promoters, and also differed in the magnitude of the response generated. We therefore propose that RpoE1 is a secondary, species-specific regulator of SOE gene expression rather than a general, conserved regulatory circuit. Sulfite produced by major dissimilatory processes appeared to be the trigger for SOE gene expression in both species, as we were unable to find evidence for an increase of SOE activity in stationary growth phase. The basic regulation of bacterial sulfite oxidation by cognate ECF sigma factors is likely to be applicable to three groups of alpha and beta-Proteobacteria in which we identified similar SOE operon structures

    Antifungal benzo[b]thiophene 1,1-dioxide IMPDH inhibitors exhibit pan-assay interference (PAINS) profiles

    Get PDF
    Fungi cause serious life-threatening infections in immunocompromised individuals and current treatments are now complicated by toxicity issues and the emergence of drug resistant strains. Consequently, there is a need for development of new antifungal drugs. Inosine monophosphate dehydrogenase (IMPDH), a key component of the de novo purine biosynthetic pathway, is essential for growth and virulence of fungi and is a potential drug target. In this study, a high-throughput screen of 114,000 drug-like compounds against Cryptococcus neoformans IMPDH was performed. We identified three 3-((5-substituted)-1,3,4-oxadiazol-2-yl)thio benzo[b]thiophene 1,1-dioxides that inhibited Cryptococcus IMPDH and also possessed whole cell antifungal activity. Analogs were synthesized to explore the SAR of these hits. Modification of the fifth substituent on the 1,3,4-oxadiazole ring yielded compounds with nanomolar in vitro activity, but with associated cytotoxicity. In contrast, two analogs generated by substituting the 1,3,4-oxadiazole ring with imidazole and 1,2,4-triazole gave reduced IMPDH inhibition in vitro, but were not cytotoxic. During enzyme kinetic studies in the presence of DTT, nucleophilic attack of a free thiol occurred with the benzo[b]thiophene 1,1-dioxide. Two representative compounds with substitution at the 5 position of the 1,3,4-oxadiazole ring, showed mixed inhibition in the absence of DTT. Incubation of these compounds with Cryptococcus IMPDH followed by mass spectrometry analysis showed non-specific and covalent binding with IMPDH at multiple cysteine residues. These results support recent reports that the benzo[b]thiophene 1,1-dioxides moiety as PAINS (pan-assay interference compounds) contributor

    Bacterial sulfite-oxidizing enzymes

    Get PDF
    Enzymes belonging to the Sulfite Oxidase (SO) enzyme family are found in virtually all forms of life, and are especially abundant in prokaryotes as shown by analysis of available genome data. Despite this fact, only a limited number of bacterial SO family enzymes has been characterized in detail to date, and these appear to be involved in very different metabolic processes such as energy generation from sulfur compounds, host colonization, sulfite detoxification and organosulfonate degradation. The few characterized bacterial SO family enzymes also show an intriguing range of structural conformations, including monomeric, dimeric and heterodimeric enzymes with varying numbers and types of redox centres. Some of the bacterial enzymes even catalyze novel reactions such as dimethylsulfoxide reduction that previously had been thought not to be catalyzed by SO family enzymes. Classification of the SO family enzymes based on the structure of their Mo domain clearly shows that three distinct groups of enzymes belong to this family, and that almost all SOEs characterized to date are representatives of the same group
    corecore