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Enzymes belonging to the Sulfite Oxidase (SO) enzyme family are found in virtually all forms of life, and are
especially abundant in prokaryotes as shown by analysis of available genome data. Despite this fact, only a
limited number of bacterial SO family enzymes has been characterized in detail to date, and these appear to be
involved in very different metabolic processes such as energy generation from sulfur compounds, host
colonization, sulfite detoxification and organosulfonate degradation. The few characterized bacterial SO
family enzymes also show an intriguing range of structural conformations, including monomeric, dimeric and
heterodimeric enzymes with varying numbers and types of redox centres. Some of the bacterial enzymes even
catalyze novel reactions such as dimethylsulfoxide reduction that previously had been thought not to be
catalyzed by SO family enzymes. Classification of the SO family enzymes based on the structure of their Mo
domain clearly shows that three distinct groups of enzymes belong to this family, and that almost all SOEs
characterized to date are representatives of the same group.
The widespread occurrence and obvious structural and functional plasticity of the bacterial SO family
enzymes make this an exciting field for further study, in particular the unraveling of the metabolic roles of the
three enzyme groups, some of which appear to be associated almost exclusively with pathogenic
microorganisms.
l rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Sulfite-oxidizing enzymes are essential for many living cells, and
as a result of the severity of the sulfite oxidase deficiency syndrome in
humans these enzymes have been studied in vertebrates for decades
[1]. However, although the presence of similar enzymatic activities in
bacteria was already reported over 40 years ago [2], the bacterial
sulfite-oxidizing enzymes have remained elusive until recently, and
significant progress in their study has only been made in the last
10 years [3–5].

All sulfite-oxidizing enzymes (SOE) characterized to date are
molybdoenzymes that belong to the sulfite oxidase (SO) enzyme
family. Contrary to earlier beliefs that this enzyme family contained
exclusively eukaryotic enzymes [6–8], recent phylogenetic analyses
have shown that SO-like enzymes are found in virtually all forms of
life, and that protein sequences originating from bacteria make up the
vast majority of SO family proteins [3,9]. Despite this fact little is
currently known about the metabolic roles and the reactions
catalyzed by these bacterial enzymes.

Sulfite occurs naturally in the environment, and in addition several
metabolic pathways such as the degradation of sulfur-containing
amino acids [10], organosulfonate metabolism [11] and sulfur oxida-
tion pathways in chemolithoautotrophic bacteria [4] are known to
lead to the formation of sulfite as an intermediate metabolite. Addi-
tional roles for sulfite as a signaling molecule in the vertebrate im-
mune system and a potential role for sulfite in host defence against
pathogens are emerging [12–15].

Due to its highly reactive nature, the sulfite anion can react with
vital cell components such as DNA and proteins. Sulfite causes protein
damage by reacting with disulfide bonds, and this is also the basis for
some of its industrial applications [16]. In vertebrates, accumulation of
sulfite caused by a sulfite oxidase deficiency causes damage to the
central nervous system and increases oxidative stress [17,18].
Exposure of cells to sulfite is also known to lead to increased lipo-
peroxiation and to disable cellular stress defence mechanisms by
depleting the glutathione pool and lowering the activity of enzymes
such as catalase and glutathione peroxidase [19–21]. Therefore, both
pro- and eukaryotic cells that can become exposed to externally or
internally generated sulfite need to be able to detoxify it efficiently,
which can occur either via reduction to the level of sulfur or sulfide, or,
more commonly, by oxidation to sulfate.

In bacteria, the oxidation of sulfite to the inert sulfate anion
proceeds via one of two possible routes [4]: in the indirect pathway
the enzyme adenylylphosphosulfate (APS) reductase [EC 1.8.4.8]
catalyzes the formation of APS, which is subsequently hydrolyzed to
sulfate and either ATP or ADP by the action of sulfate adenylyltrans-
ferases [EC 2.7.7.4 or EC 2.7.7.5]. In contrast, the direct oxidation

http://dx.doi.org/10.1016/j.bbabio.2010.09.004
mailto:u.kappler@uq.edu.au
http://dx.doi.org/10.1016/j.bbabio.2010.09.004
http://www.sciencedirect.com/science/journal/00052728


2 U. Kappler / Biochimica et Biophysica Acta 1807 (2011) 1–10
catalyzed by the molybdenum-containing enzymes of the SO family
[4] is much more widespread and is the main topic of this review.

The SO enzyme family is one of the main families of the mono-
nuclear molybdenum enzymes, which also comprise the Xanthine
Oxidase and DMSO Reductasemolybdoenzyme families [22–24]. In all
of these enzymes the active site contains a single molybdenum/
tungsten atom that is coordinated by one or two molecules of an
organic cofactor, the so-called ‘molybdopterin’ or ‘pyranopterin’ co-
factor which is also known as ‘Moco’ [25]. This cofactor occurs in two
forms: a single molecule of the basic ‘molybdopterin’ (MPT or Mo-
PPT) form is found in the SO and Xanthine Oxidase families (Fig. 1),
while twomolecules of a nucleotide modified form of MPT coordinate
the Mo atom in enzymes of the DMSO Reductase family [26,27]. Both
b- or c-type heme groups may be present in sulfite-oxidizing enzymes
(SOEs) as additional redox centres [3], and apart from SOEs, the SO
enzyme family also contains the plant, algal and yeast nitrate
reductases [28] and a large number of prokaryotic enzymes of
unknown function [3].

Based on their ability to transfer electrons to molecular oxygen,
two types of molybdenum-containing SOEs are usually distinguished,
sulfite oxidases (SO) [EC 1.8.3.1] that can use molecular oxygen as an
electron acceptor, and sulfite dehydrogenases (SDH) [EC 1.8.2.1] that
use other electron acceptors such as cytochromes c [3,29]. The general
reaction catalyzed by these enzymes is SO3

2−+H2O→SO4
2−+2H++

2e−, which in the case of oxygen as the electron acceptor leads to the
production of hydrogen peroxide, while for sulfite dehydrogenases
reduced cytochrome c is produced (Fig. 2). It should be noted,
however, that for historical reasons, the sulfite-oxidizing enzymes
found in vertebrates are usually referred to as sulfite oxidases,
although they only possess a weak reactivity towards oxygen [30] and
use cytochrome c as their preferred electron acceptor. In contrast, the
recently purified sulfite oxidase from Arabidopsis thaliana is a true
sulfite oxidase [31].
Fig. 1. Structure of bacterial enzymes of the Sulfite Oxidase family. Panel A: crystal struc
dehydrogenase, SorA — light blue, and SorB — turquoise; Right: E. coli YedY protein, dark blu
SO family enzymes. Panel C: active site structure of the St. novella SorAB SDH, residues of S
MPT — turquoise.
1.1. Structure of SO family enzymes: the ‘SUOX-fold’

Several crystal structures are available for enzymes of the SO
family, and these include representatives of three different types of
SOEs [32–34], a eukaryotic nitrate reductase [28] and the bacterial
YedY protein [35]. The overall structure of these enzymes varies
significantly (Figs. 1 and 3) with the sulfite oxidases from plants and
vertebrates being homodimers, which, in the case of the vertebrate
enzymes, contain a mobile N-terminal heme b domain, the nitrate
reductases beingmultidomain proteins with additional heme and FAD
binding domains, while the bacterial SorAB SOE is a heterodimer
comprising a molybdenum-binding subunit (SorA) and a smaller,
heme c containing subunit (SorB) (Fig. 1). The two subunits of the
SorAB SOE form a stable complex with the two redox centres being
always found in close proximity (16.6 ÅMo–Fe distance, and 8.5 ÅMo
to heme propionate-6 distance), and the SorAB crystal structure was
the first SOE structure that allowed insights into intramolecular
electron transfer between the heme and Mo redox centres in an SO
family enzyme [34]. Due to the mobility of the heme domain found in
vertebrate SOs, similar insights could not be derived from the crystal
structure of the chicken liver SO, where the heme domain crystallized
in a position far removed from the active site [32]. However, using the
SorAB structure as a model, a docking site of the mobile heme domain
of the chicken liver enzyme close to the Mo active site has been
identified [34]. In contrast to these heme and Mo-containing SO
family proteins, the E. coli YedY protein appears to exist in monomeric
form [35] and does not contain additional redox centres (Fig. 1).
Despite these differences in the overall structure and number of redox
centres present in these enzymes, all available crystal structures show
a conserved fold of the molybdenum domain, which has been termed
the SUOX-fold [5]. It comprises a characteristic mixture of 10–12 α-
helices and 2–3 β-sheets (Fig. 1). With the exception of YedY, all other
SO family proteins for which crystal structures are available contain
tures of bacterial enzymes of the sulfite oxidase family. Left: St. novella SorAB sulfite
e. Panel B: schematic representation of the molybdopterin (MPT) cofactor found in the
orA subunit — turquoise; residues or SorB subunit — green; heme group — yellow, and



Fig. 2. General reaction mechanism for heme-containing sulfite-oxidizing enzymes.
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an additional domain, the so-called dimerization domain that can
mediate interactions between Mo-binding subunits e.g. of the
homodimeric SOs from plants and vertebrates. However, in some
bacterial enzymes (St. novella SorAB SDH, and Cupriavidus necator SOE
[36,37]), the dimerization domain is present but does not appear to
mediate any interactions between Mo-binding subunits. The fold of
the dimerization domain is a beta-barrel structure with seven strands
and is also conserved [5].

2. The molybdenum active site of SO enzymes

The central molybdenum atom at the active site of all SO family
enzymes is coordinated by the dithiolene group of one MPT-type
cofactor, a conserved cysteine residue and two oxo groups, resulting
in a square pyramidal coordination sphere for all enzymes investi-
gated so far (Fig. 1). Residues surrounding the Mo active site are
conserved in enzymes with similar function, for example, in all
confirmed SOEs a conserved tyrosine (Tyr-236, St. novella numbering)
and up to three conserved arginine residues are found in close
proximity to the molybdenum centre [32,34]. These conserved
Fig. 3. Schematic representation of the structure and cellular localization of enzymes belongin
PSO — plant sulfite oxidase; SorAB — St. novella sulfite dehydrogenase, and YedY/YedZ — Y
arginine residues are thought to support binding and orientation of
the sulfite anion relative to the Mo-site [32,34,38]. At least two
conserved Arg residues (Arg-55, Arg-109, St. novella numbering) are
found in all so far characterized enzymes that carry out sulfite
oxidation [3,5], and one of these, Arg-55, is located within hydrogen
bonding distance of the Mo redox centre (Fig. 1). In contrast Arg-109
is found in the substrate access channel leading to theMo active site. It
appears as if the third conserved arginine residue which is also the
one that is the furthest removed from the active site is only found in
vertebrate SOs [39].

Sulfite oxidation is thought to proceed via an attack of the sulfur
lone pair of electrons on the equatorial oxo group of the molybdenum
centre, resulting in a reduction of the molybdenum from the Mo(VI)
to the Mo(IV) state [40–44] (Fig. 2). The reaction product, sulfate, is
liberated by hydrolysis in a coupled electron proton transfer reaction,
which leads to a modification of the equatorial Mo oxo-ligand to a
hydroxo or water ligand. This reductive half reaction is followed by a
transfer of the two electrons stored in the reduced Mo centre to an
external electron acceptor to regenerate the fully oxidized state of the
Mo centre. If no additional redox centres are present in the enzyme
(e.g. plant SO [31], Sm. meliloti SorT [45]), the two electrons stored in
theMo centre are directly transferred to an external electron acceptor.
If additional redox centres such as heme groups are present (vertebrate
SOs, andbacterial SorABSDH), the electrons are sequentially transferred
to the external acceptor via these redox centres (Fig. 2). This second
mechanism requires a number of intramolecular electron transfer (IET)
steps [43] and results in the intermediate formation of a stable, one
electron reduced Mo(V) state of the molybdenum centre that is
detectable by spectroscopy and has been widely used to characterize
the molybdenum centres of sulfite-oxidizing enzymes [7,41,46,47]. In
vertebrate SOs catalysis also requires a repositioning of the cytochrome
b domain, which makes their reaction mechanism more complex than
that of equivalent bacterial SOEs [43,44,48]. The heme domain of the
vertebrate SOs has to move from a location distant from the Mo active
site (which presumably is the position of the domain in the chicken SO
crystal structure, [32]) to a position that enables electron transfer from
the Mo to the heme b redox centre. This process requires not only the
repositioning of the domain, but also efficient docking to themain body
of the enzyme [49].
g to the three groups of SO family enzymes. HSO/CSO— human/chicken sulfite oxidase;
edY/YedZ proteins from E. coli.

image of Fig.�2
image of Fig.�3
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The formation of a stable modified form of the enzyme such as the
two electron reduced form of the heme-containing SOEs generated
following sulfite oxidation is typical of a ping-pong reaction
mechanism, and this type of mechanism has been shown to exist in
both heme containing bacterial and vertebrate SOEs [1,36,43,50]. All
characterized SOEs have KMsulfite values in the low micromolar range
(~4–100 μM) and turnover numbers between ~26 s−1 (vertebrate
SOEs) and ~350 s−1 (bacterial SOEs) [51]. Where such data has been
reported (vertebrate SOs and SorAB SOE) maximal SOE activity is
observed between pH 8 and 8.5, and the affinity for the substrate,
sulfite, decreases almost exponentially above pH 8.5, and increases
towards the low pH range. This appears to be a property of the Mo
centre of these enzymes, as in non-steady state kinetics carried out on
the reductive half reaction (i.e. sulfite oxidation at the Mo centre and
reduction of the enzyme without any added external electron centre,
Fig. 2) KDsulfite showed the same pH dependence as KMsulfite in steady
state kinetics [52,53].

The originally proposed mechanism of SOE catalysis assumes that
in the reductive half reaction, i.e. the initial oxidation of sulfite,
reduction of the Mo centre and hydrolysis of the bound sulfate
molecule would always occur before electrons would be passed on
from theMo to additional redox centres or external electron acceptors
(Fig. 2). Using a combination of kinetics, EPR and studies of
intramolecular electron transfer (IET #2, Fig. 2), we have recently
been able to show for the bacterial SorAB SDH that there is greater
plasticity in the SOE catalytic mechanism than previously assumed,
and that electrons can leave the Mo centre before the release of the
sulfate molecule from the Mo centre occurs [44,54].

3. Spectroscopy of SO family enzymes

EPR spectroscopic investigations of the one electron reduced Mo
(V) state of SOE redox centres were among the earliest methods used
to probe the state and conformations of the Mo centre in vertebrate
SOs and findings have been the subject of many excellent review
papers [41,43,55–57]. Several characteristic Mo(V) EPR signals are
known for SOEs, and have been named according to the conditions
under which they were first identified, i.e. high and low pH signals,
phosphate- and sulfite-inhibited forms and the so-called ‘blocked’
form of the Mo centre [54,58–62] (Table 1). All of these EPR signals
were first described in the wild type vertebrate SOs, however, it
appears that the Mo centres of the bacterial SOE differ from those of
the vertebrate enzymes. For example, the Mo centre of the bacterial
SorAB SDH exhibits only a ‘high pH’ EPR signal, regardless of changes
in buffer pH or additions (e.g. phosphate) to the buffer system [36,56].
The sulfite reduced SorT SDH from Sm. meliloti also has a high pH EPR
spectrum (Kappler and Enemark, unpublished). This suggests that
Table 1
Summary of EPR signals and g-values observed for different bacterial and eukaryotic SO fam

SO family group EPR signal SO family enzyme

Group 2 SOEs High pH CSO
HSO
AT-SO
SorAB

Low pH CSO
HSO
AT-SOsulfite red
AT-SOTi citr. red
SorABY236F

Phosphate inhibited CSO
‘Blocked’/sulfite-bound CSO sulfite

HSOR160Q blocked
At-SO blocked

SorABR55Q species 1
Group 1 SOEs As prepared YedY
although the crystal structures of SOEs show virtually identical Mo
active sites with identical amino acids close to the Mo atom, they
differ in subtle ways that influence the spectroscopic properties of the
Mo centres. Both the low pH EPR signal and blocked form of the EPR
spectrum,which is indicative of a sulfate bound to theMo centre, have
been observed in the bacterial SorAB SDH, but only in variant enzymes
carrying mutations close to the active site (SorABY236F — low pH
signal, and SorABR55Q — blocked form) [51,54]. The SorABY236F

mutation disrupts the extensive hydrogen bonding network around
the Mo active site, which appears to allow the Mo centre to adopt a
conformation corresponding to the ‘low pH form’ of the vertebrate
SOs [51]. This mutation also gave rise to a low level sulfite oxidase
activity in the SorAB sulfite dehydrogenase. In contrast, the SorABR55Q

substitution removes one of the conserved arginine residues from the
immediate environment of the Mo centre (Fig. 1), which results in a
severe slowing down of the hydrolysis of the Mo-sulfate complex and
thus gives rise to the ‘blocked’ EPR species [54]. Interestingly, the
SorABR55Q mutation corresponds to a clinically identified mutation
(R160Q) in the human SO that causes sulfite oxidase deficiency
syndrome [63].

An important element of SO catalysis is the transfer of electrons
between the different redox centres present in both the vertebrate
SOs and the bacterial SorAB SDH, and this can be probed in heme-
containing SOEs by laser-flash photolysis, which measures electron
transfer from the heme group to the Mo centre, i.e. electron move-
ment in the opposite of the physiological direction [43]. Using this
technique, the involvement of domain movement in the catalysis of
vertebrate SOs but not in the SorAB SDH has been proven [64,65], and
it was also instrumental in determining the moderating influence of
the conserved arginine closest to the active site (Arg-55, St. novella
numbering) on heme toMo electron transfer rates [44]. Typical electron
transfer rates (kET) for human SO are 411 s−1 at pH 6.0, while for the
bacterial SorAB SDH only 120 s−1 was determined at the same pH
[64,65]. It is intriguing to note the apparently inverse relationship of
these IET rates and turnover numbers derived from steady state assays.
At pH 6.0, human SO has a turnover number of 13.2 s−1, for SorAB the
turnover rate was 50 s−1 [51,53].

4. SO family enzymes from prokaryotic sources

SOEs have been reported to exist in diverse groups of Bacteria,
including all groups of Proteobacteria, Firmicutes, and the Thermus
lineage, as well as in Archaea [3], however, in many cases only an
enzymatic activity or a basic enrichment of the proteins was reported
and the earlier literature on these enzymes has been reviewed in [4].
In the last 9 years, several publications have described the purification
and characterization of bacterial SOEs. A common feature of the
ily enzymes.

gz gy gx References

1.9872 1.9641 1.9531 [90]
1.987 1.964 1.954 [54,91]
1.989 1.964 1.963 [92]
1.989 1.964 1.952 [36]
1.991 1.966 1.954 [54]
2.0037 1.972 1.9658 [90]
2.0037 1.972 1.9658 [91]
2.005 1.974 1.963 [60]
2.006 1.975 1.968
2.004 1.973 1.965 [51]
1.9917 1.9692 1.9614 [93]
1.996 1.972 1.9629 [62]
2.006 1.971 1.951 [94]
2.002 1.972 1.962 [60]
2.005 1.974 1.963
2.006 1.968 1.949 [54]
2.03 1.974 1.969 [85]
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characterized bacterial enzymes of the SO family is that they all
appear to be located in the bacterial periplasm, i.e. in an extracellular
compartment. In keeping with this, the genes encoding the molyb-
denum subunits of these enzymes usually encode a twin arginine-
type (TAT) leader sequence for TAT-dependent export [66] of the
enzymes to the periplasm [3].

At present, the bacterial SO family enzymes can be classified into
two main groups, those that have been shown to catalyze sulfite
oxidation [36,37,67–69] and proteins of unknown function (e.g. YedY
from E. coli [70]). Within the group of confirmed SOEs enzymes
containing only a molybdenum centre and those also containing a
heme redox centre can be distinguished. Although specific chaperone
proteins have been identified for prokaryotic enzymes from other
molybdenum enzyme families, so far no such proteins have been
identified for any enzymes of the SO family.
4.1. Bacterial heme- and molybdenum-containing SOEs

The heme-containing, heterodimeric SorAB SDH (SorA: 40.2 kDa
Mo subunit, and SorB: 8.8 kDa heme c subunit) from the soil bacterium
Starkeya novella is at present the best characterized bacterial SOE
[36]. SorAB is expressed to high levels when St. novella grows as a
chemolithoautotroph on thiosulfate [71], but a direct association of the
enzymewith a specific dissimilatory sulfur oxidation pathway has not
been established. SorAB is encoded by the sorAB genes and has been
proposed to be under the control of an extracytoplasmic function
(ECF)-type sigma factor belonging to the large subgroup ECF 26which,
at present, however, has no characterized representatives [71,72]
(Figure S1).

The assembly of the bacterial heme-containing SOEs in general
poses an interesting problem, as the Mo subunit contains a signal
peptide targeting it for TAT-mediated export, while the heme-
containing cytochrome c subunits are predicted to be exported via
the Sec-pathway [73]. This means that the Mo subunit is exported in
folded and matured form, while the heme-containing subunit
matures after export to the periplasm. The assembly of the protein
complex also needs to be achieved following the separate export of
the two subunits to the periplasm.

The SorAB SDH resembles the vertebrate SOEs in terms of the redox
centres it contains, but while catalysis in the vertebrate enzyme
requires movement of the heme domain, thereby adding another level
of complexity to the catalyticmechanism, the redox centres in SorAB are
in a fixed position relative to one another (Fig. 1), which facilitates
structure–function studies of SOE catalysis and has made SorAB a
valuable model enzyme [34,44,51,52,54,56,65,74–78]. Although St.
novella is a mesophilic organism, SorAB activity increases with
temperature, and an optimum reaction temperature of 65 °C has been
determined for the enzyme [36]. Some key spectroscopic and
Table 2
Comparison of the catalytic parameters of different bacterial sulfite-oxidizing enzymes.

St. novella SorABa Cv. necator SorAb T.

KM sulfite 27 μM 50–100 μM 10
KM cyt.c 2 μM n.r. n.
KM ferricyanide n.d. 0.9 mM 6.
kcat 345 s−1 n.r. 53
Vmax 422 U/mg 412.6 U/mg⁎ n.
Reaction conditions 25 °C, pH 8 n.r., pH 8 60

n.r. — not reported, and n.d. — not determined.
a Refs. [36,52].
b Performed using an enriched enzyme fraction Ref. [37].
c Ref. [68].
d Ref. [67].
e Ref. [45].
⁎ Computed from the activity of 6850 mkat kg−1 reported in [2].
^ Value as reported in Ref. [67], a specific activity of 56.67 U/mg was reported for the pu
enzymological properties of SorAB have already been discussed above
or are summarized in Table 2. Several variants of SorAB carrying specific
mutations close to the Mo active site (Y236F, H57A, R55M, R55Q, and
R55K)have been studied [44,51,52,54], and for two of them (Y236F, and
R55M), crystal structures are also available [51]. All mutations caused
significant changes in the SorAB catalytic parameters, the Tyr-236
mutation altered the reactivity of SorAB towards oxygen, while the
series of Arg-55 mutations had profound effects on KM sulfite, altering it
by up to three orders of magnitude with the effect increasing with the
loss of the positive charge at the active site. In contrast, the His-57
mutation had only a relativelymild effect on SorAB catalysis, but lead to
a decrease in substrate affinity belowpH7, indicating that this residue is
involved in mediating highly efficient catalysis at low pH.

A SorAB related SOE has been reported to exist in the human
pathogen Campylobacter jejuni, a common causative agent of gastro-
enteritis [69]. The enzyme could be detected in cell extracts using
anti-St. novella SorAB antibodies and a knockout of the gene encoding
the putative cytochrome c subunit of this enzyme abolished all sulfite-
oxidizing activity [69]. However, while these data clearly show that
the cytochrome subunit is essential for ‘sulfite respiration’ in Cb. jejuni,
it is unclear whether the cytochrome is indeed a subunit of the Cb.
jejuni SOE, or whether it may be an accessory protein that is required
for electron transfer. No kinetic or structural data is available for this
protein at present [69].

In addition to the actual sulfite-oxidizing enzymes, there is a large
group of bacterial heme-containing SO family enzymes that are core
components of a multienzyme complex that enables chemolitho-
trophic growth of bacteria on thiosulfate [79]. These SoxCD sulfur
dehydrogenases are heterotetrameric (α2β2) enzymes with cyto-
chrome c subunits that can contain one or two heme groups [80,81].
The purified SoxCD protein from Paracoccus pantotrophus had no
sulfite-oxidizing activity, and all kinetic characterizations were done
using a reconstituted multienzyme complex or SoxCD enriched
protein fractions [80]. In the context of the multienzyme complex
SoxCD is thought to catalyze the oxidation of the thiosulfate sulfane
sulfur to a sulfone group [82], but at present SoxCD can only be
assayed as part of the reconstituted multienzyme complex.
4.2. Bacterial SOEs without accessory redox centres

Although the St. novella SorAB SDH by virtue of being the best
characterized bacterial SOE has become somewhat of a paradigm for
bacterial SOEs, it would appear that SorAB-like, heme-containing
enzymes might actually be less common than those lacking an
associated heme-subunit. At present, five bacterial SOEs that do not
contain redox centres other than the catalytic Mo centre have been
purified and characterized from various sources [37,45,67,68]. Despite
the fact that all of these enzymes contain a dimerization domain, some
thermophilus TTSorc Dc. radiodu rans DraSORd Sm. meliloti SorTe

.7 μM 94.5 μM 15.5 μM
r. n.r. n.d.
3 μM n.r. 3.4 μM
,318 s−1^ n.r. 343 s−1

r. n.r. 522 U/mg
°C, pH 8 55 °C, pH 8 25 °C, pH 8

rified enzyme.



6 U. Kappler / Biochimica et Biophysica Acta 1807 (2011) 1–10
of them occur as monomers, while others are dimeric in structure or
can even occur in both forms. Unlike the enzymes in the previously
described group, all proteins in this group have low or no activity with
horse heart cytochrome c as the electron acceptor and are usually
assayed using ferricyanide, a trait that has caused them to be
described as ‘atypical’ sulfite dehydrogenases [83].

The first enzymes of this type were isolated from Thermus
thermophilus and Deinococcus radiodurans [67,68]. Both of these species
belong to the low-branching Deinococcus–Thermus phylum, which is
unique in that it contains both Gram-negative (Thermus sp.) and Gram-
positive bacteria (Deinococcus sp.) [84]. The SOE from Thermus
thermophilus (TTSor) was purified in both native and recombinant
form and is a periplasmically located, 39.1 kDa monomer containing
only a Mo redox centre [68]. KM values for sulfite and ferricyanide were
in the low micromolar range (10.7 and 6.3 μM, respectively), similar to
those reported for other SOEs [68] (Table 2). The activity of the enzyme
did not change significantly as a function of pH, although above pH 9 a
steep increase in activity was observed, which, however, as the authors
point out, could be an artifact [68]. Optical spectra of the reduced
enzyme indicated the presence of a molybdenum cofactor, and
an optimal reaction temperature of 60 °C was determined (note that
the growth temperature recommended by the German type culture
collection, DSMZ, for T. thermophilus is 75 °C, and some other bacterial
SOEs from mesophilic bacteria also showed maximal activity at 55–
65 °C [36,67]). In T. thermophilus HB27 the TTC0961 gene encoding this
enzyme occurs upstream of a gene encoding a cytochrome c552 that,
however, does not appear to be part of the enzyme (Figure S1). Another
T. thermophilus gene locus (TTC1044–1056) contains genes known to
encode a thiosulfate oxidizing multienzyme complex, including a SoxC
related protein (TTC1046).

In contrast to the situation in T. thermophilus, no cytochrome c
encoding genes are found either up- or downstream of the gene
encoding DraSOR (DR_A0225), the SOE from Deinococcus radiodurans
R1 (Figure S1). DraSOR is expressed at high levels under heterotrophic
conditions as well as in the presence of thiosulfate and/or molybdate
[67]. The enzyme (predicted mol. mass 39.8 kDa) was overexpressed
in E. coli and exists as a mixture of mono- and dimeric forms. Both
forms are active, but the dimer may be the native enzyme form as it
showed three times the enzymatic activity of the monomeric form
[67]. Although DraSOR originates from a mesophilic bacterium
(standard growth temperature 30 °C), all enzymatic characterizations
(Table 2) were carried out at 55 °C, the reported optimum reaction
temperature of the enzyme, where the enzyme has a half-life of
30 min [67]. The reported KM value for sulfite was close to 100 μM,
between 3 and 4 times higher than those reported for other bacterial
SOEs (Table 2).

The remaining three characterized bacterial SOEs all originate
from organosulfonate degrading Proteobacteria, namely two species
belonging to the Burkholderiales within the β-Proteobacteria, Delftia
acidovorans and Cupriavidus necator (formerly known as Comamonas
acidovorans and Ralstonia eutropha, respectively), and the α-Proteo-
bacterium Sinorhizobium meliloti that, like Starkeya novella, belongs to
the Rhizobiales. The SOEs from these bacteria have proven to be
difficult to purify from native sources [37,45,83].

The SOE from Cv. necator is encoded on chromosome 2 by gene
H16_B0860, upstream of a cytochrome c encoding gene (H16_B0859), a
cytochrome c, however, did not appear to be part of the purified enzyme
preparation [37]. Theenzymehasapredictedmolecularmassof40.7 kDa,
and was proposed to be a monomeric enzyme based on gelfiltration
experiments (est. molecular mass. 49–55 kDa) with a KM sulfite between
50 and 100 μM (Table 2). The extremely low yield of the purification
precluded more detailed enzymatic characterization [37].

The SOE from Delftia acidovorans SPH-1 was enriched from the
native organism [37] and found to be a heme-free homodimer, based
on gelfiltration results (predicted molecular mass: 39.8 kDa, and
67 kDa by gelfiltration) [37]. The enzyme is encoded by an operon
containing the SOE gene and a gene for a cytochrome c (Daci_0055
and Daci_0054), and upstream of the SOE gene genes encoding an
ECF-type sigma factor and a putative anti-sigma factor are located
(Figure S1), an arrangement reminiscent of the operon encoding the
St. novella SorAB SOE, although the purified Dt. acidovorans enzyme is
structurally distinct from the St. novella one. Expression of Dt.
acidovorans SOR was reported to be inducible [37]. The two
cytochromes encoded by Daci_0054 and H16_B0859 genes, respec-
tively, encode fully soluble, periplasmic proteins. For both the Dt.
acidovorans and Cv. necator enzymes, the authors predict the
existence of a membrane-bound cytochrome (‘SorB’) that would
function as the electron acceptor for the SOE.

Interestingly, while most of the bacterial SOEs described so far
have about 30% identical amino acid sequences, the monomeric
enzyme from Cv. necator is 60% identical to the heterodimeric SorAB
from St. novella, while the Dt. acidovorans SOE is most closely related
(61% identity) to the recently purified SorT SOE from Sinorhizobium
meliloti. Thus in each of these cases the most closely related,
characterized SOE is found in a bacterium belonging to a different
group of the Proteobacteria.

SorT from Sm. meliloti is a homodimeric, heme-free sulfite
dehydrogenase with a subunit molecular mass of 39.4 kDa. The
enzyme has high affinities to both sulfite and ferricyanide (15.5 and
3.4 μM, respectively) and a turnover number of 343 s−1 (Table 1) [45].
Like the closely related Dt. acidovorans SOE, SorT is encoded in a gene
region that also contains genes for an ECF sigma factor/anti-
sigmafactor pair (Figure S1), and the sorT gene itself was shown to
be co-transcribed with genes encoding other redox proteins, a
cytochrome c and an azurin [45]. Despite this, there is no evidence
for either of these two proteins being an integral part of the SorT
enzyme, and SorT only shows 13% of the activity observed with
ferricyanide when cytochrome c (horse heart) is used as the electron
acceptor. SorT is located in the periplasm, and while low level SorT
activity appears to be always present in Sm. meliloti, activity is induced
4–6 fold in the presence of taurine or thiosulfate [45]. Purified SorT
shows a typical high pH EPR spectrum (Enemark and Kappler, un-
published). Unlike any other SOE that has been characterized in this
respect so far, SorT has an almost pH-independent KM sulfite (pH 6–10),
while in the SorAB SDH and the vertebrate SOs the KM sulfite increases
exponentially above pH 8.5. This is the first time that an SOE with
altered catalytic properties has been identified.

4.3. Bacterial SO family enzymes of unknown function

There is only one characterized representative of this group at
present, the YedY protein from E. coliwhich does not oxidize sulfite or
any other substrate tested, but has been shown to have a weak
dimethylsulfoxide reductase activity (reported KM value 12 mM, kcat
4.83 s−1) [35,70]. YedY is a monomeric enzyme that contains only a
Mo redox centre and likely uses the membrane-bound YedZ b-type
cytochrome as an electron donor [70]. The crystal structure of YedY
clearly shows the core SUOX-fold present in all SO family enzymes
(Fig. 1), however, YedY lacks the dimerization domain found in all
other structurally characterized SO enzymes, as well as the conserved
Arg residues (see section 2) found in SOEs, which is in keeping with a
chemically different substrate molecule being used. The actual Mo
redox centre of YedY, however, is virtually identical to those of other
SO family proteins in terms of its geometry and coordination [35].
Redox titrations revealed that the Mo centre of YedY only shows a
single redox potential (132 mV) for the Mo(IV/V) transition, contrary
to what is seen in other SO family enzymes where the Mo centre
cycles between a Mo(IV) and Mo(VI) state. EPR spectra of the Mo(V)
state of the YedY active site differ significantly from the signals
typically seen in SOEs (Table 1) and instead bear close resemblance to
the EPR spectrum of the Xanthine oxidase ‘very rapid’ reaction
intermediate [70,85]. This has been proposed to be indicative of some
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of the Mo–S bonds of the YedY Mo centre assuming a more covalent
character.

5. Phylogenetic analyses of the SO enzyme family

The available, biochemical data on bacterial SO family enzymes
clearly highlights their great structural and possibly functional diversity
aswell as the fact that ameaningful classification system is necessary to
distinguish between the different enzyme types.

Based on the architecture of the central catalytic molybdenum
domain, the SO family enzymes can be classified as belonging to three
major groups, and within each of these groups several further
subdivisions can be made [3]. While groups 1 and 3 contain
exclusively bacterial and archaeal proteins, group 2 contains proteins
of both pro- and eukaryotic origins (Figs. 3, 4 and S2).

Sequences in group 1 originate mainly from pathogenic bacteria
such as Salmonella, Yersinia, Ralstonia and Burkholderia, and the YedY
protein from E. coli is the only characterized enzyme in this group. The
molybdenum domain of group 1 proteins has a size of 30–35 kDa, and
the genes encoding these proteins always occur in proximity to a gene
encoding a membrane-bound cytochrome b subunit. Based on the
nature of this cytochrome subunit, two subgroups can be distin-
guished — group 1A (characterized representative: YedY from E. coli,
cytochrome b subunit (YedZ) with 6 transmembrane helices) and
group 1B (no characterized representative to date, cytochrome b
subunit with 4 transmembrane helices) [3].

Group 2 is comprised of all confirmed SOEs and the plant nitrate
reductases. It is also the only group where the molybdenum domain
always occurs in conjunction with a dimerization domain located on
the same polypeptide and with the exception of YedY this group
contains all the characterized bacterial SO family enzymes described
above. The size of the combined Moco/dimerization domains is ~40–
45 kDa in this group, but additional domains can be present on the
same polypeptide, e.g. in vertebrate SOs and plant nitrate reductases.
In addition to nitrate reducing and sulfite-oxidizing enzymes,
there is evidence that this group also contains bacterial enzymes
catalyzing largely uncharacterized reactions, such as the SoxCD sulfur
dehydrogenase [3]. Three subgroups were proposed for group 2,
group 2A— (eukaryotic) sulfite oxidases and plant nitrate reductases,
Fig. 4.Molybdenum domain architecture of different types of Sulfite Oxidase family enzymes
architecture of this domain: Group 1 has aMoco domain of 30–35 kDa, while in Group 2 the M
third group has a reduced size Moco domain of only ~25 kDa. Within group 2 fusions o
polypeptides containing the Moco domain are shown, subunits encoded on separate polyp
protein, vertebrate SO— chicken/human sulfite oxidase, PSO— plant sulfite oxidase, plant NI
SoxC— St. novella SoxCD sulfur dehydrogenase Mo subunit, SorT— Sm. meliloti SorT sulfite de
meliloti Smb20584 protein.
group 2B — SoxCD-like enzymes “sulfur dehydrogenases” and group
2C — SorAB-like sulfite dehydrogenases. It was also recognized that
additional enzymes are present in group 2 that could at the time not
be classified due to a lack of available data. Accessory heme redox
centres may or may not be present in the enzymes of this group
[3,36,37,45,67,68], and one as yet unstudied subgroup of sequences
appears to encode membrane-bound variants of SOEs [3,5].

SOE group 3 is composed of both bacterial and archaeal proteins,
and there are at present no characterized representatives of this group
of enzymes. The molybdenum domain has a size of only 20–25 kDa,
the reduced size being due to the loss of an N-terminal section of the
domain. The archaeal and bacterial sequences form two distinct
subgroups with identity values of ~30–47% within each group and
values of 25–30% for comparisons between archaeal and bacterial
sequences.

As already pointed out within each of these three groups several
subgroups exist, but at present there is insufficient information to
refine this analysis further. The division of the SO family enzymes into
three basic types based on the structure of the Mo domain
corresponds well with the conserved domains defined in the CD
database [86], where all the groups defined here can be easily linked
to the main subgroups of the cd_00321 entry that describes ‘sulfite
oxidase and related enzymes’ [45] (Table S1).

An alternative classification system for SO family enzymes has
been proposed by Workun et al. [5]. This system distinguishes
8 clades, based on a variety of characteristics such as residues
surrounding the conserved Mo-ligating cysteine, presence or absence
of leader peptides and presence or absence of other conserved
residues known to be important in the function of SOEs such as the
arginines found close to the Mo active site (see section 2 and Table 3).
The clades proposed by Workun et al. [5] can be linked to the
classification based on the overall architecture of the Mo subunit
described above (Table 3). At present, however, for most of the
enzyme clades there is no or very little data available on the actual
structure or function of the enzymes that make up the clades (e.g.
clades 2, 7, and 8). In other cases the significance of the observed
differences between the clades e.g. in residues surrounding the active
site, is unclear, as there is no or very little functional difference
observed in the characterized representatives of the respective clades,
. Three different groups of SO family enzymes can be clearly distinguished based on the
oco domain always occurs in conjunction with the so-called ‘Moco-dimer’ domain. The
f the Moco domain with additional domains have occurred in some enzymes. Only
eptides are not shown. YedY — E. coli YedY protein, PA4882 — P. aeruginosa PA4882
A— plant nitrate reductase, SorA— St. novella SorAB sulfite dehydrogenase Mo subunit,
hydrogenase, SSO3201— Sulfolobus solfataricus SSO3201 protein, and Smb20584— Sm.

image of Fig.�4


Table 3
Classification of Sulfite-oxidizing enzymes by Mo subunit structure and active site residues.

Mo subunit
grouping a

Clade b Mo subunit
domains

Simplified
classification b

Amino acid motif
surrounding
conserved Cys a,b

Additional
domains/features

Characterized representative

Group 1
Group 1A Clade 1 Moco only tat N C E | | RCVExW YedY Escherichia coli
Group 1B Clade 2 Moco only tat N C E | | CVEGW none

Group 2
Group 2A Clade 5 Moco-dimer Δtat R C G R R CAGNRR Heme b domain fused to

Moco-dimer domain
Human sulfite oxidase, and plant nitrate reductases

Group 2B Clade 6 Moco-dimer tat R C A/G | R FxECxxN Heme c subunit that is
part of enzyme

SoxCD Paracoccus pantotrophus

Group 2C Clade 3 Moco-dimer tat R C G R | CxGNxR SorAB Starkeya novella, ‘SorA’ Campylobacter jejuni, DraSor
Deinococcus radiodurans, and ‘SorA’ Cupriavidus necator

Group 2
others

Clade 4 Moco-dimer tat R C S R | CSGNGR SorT, Sinorhizobium meliloti, TTSor Thermus thermophilus ‘SorA’, and
Delftia acidovorans

Group 2
others

Clade 8 Moco-dimer Δtat R C S | | CVSN Membrane bound, no
heme domain

None

Group 3
Group 3A (Clade 7) trunc Moco

only
DFxCVTxWS No additional domains/

subunits known
None

Group 3B Clade 7 trunc Moco
only

Δtat | C T | | DFHCVTxWS No additional domains/
subunits known

None

Vertical lines in column 4 denote the absence of residues conserved in other SOEs.
a Kappler, 2008.
b Workun et al., 2008.
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while, however, clear differences in SOE subunit structure occur
within some clades (clades 3, 4, and 5) (Table 3).

It would thus appear that the classification systems for SO family
enzymes that are available to date (groups based on structure of Mo
domain architecture, clade system) show significant congruency
(Table 3). In view of the scarcity of available data, however, it
would seem that the domain architecture based system for classifying
SO family enzymes into different groups provides a sound basis for
general classification of enzymes of unknown function based on e.g.
genome data, while use of the clade system and the establishment of
additional subgroups of SOEs will remain difficult until more catalytic
and structural data become available for all major groupings of SOEs
and e.g. the significance of the presence/absence of certain residues
close to the active site for enzyme function can be fully assessed.

6. Concluding remarks

At this point in time it is becoming clear that the majority of
enzymes in the SO family are of bacterial origin, and that these
enzymes exhibit much greater functional and structural diversity than
had previously been assumed. Moreover, themajority of the SO family
enzymes encoded in the bacterial genomes sequenced so far have not
been characterized, and there is evidence that in particular the
enzymes from groups 1 and 3 may catalyze reactions that are distinct
from those usually associated with SO family proteins, namely sulfite
oxidation and nitrate reduction. Some of the recently discovered
bacterial SOEs already show catalytic and spectroscopic properties
that differ from those of all other well studied SOEs [45,85], and this
creates exciting new possibilities for further research into Mo-
mediated catalysis in these enzymes and the spectroscopic signatures
that underly such changes. As an example — unlike all other SOEs for
which such data has been determined, the SorT enzyme shows
increasing substrate affinity above pH 8.5, where in the ‘conventional’
SOEs substrate affinity begins to decrease in an exponential fashion
[45].

The available data on bacterial sulfite-oxidizing enzymes also
clearly show that similarities in operon structure as, e.g. observed for
SorAB form Starkeya novella, SorT from Sinorhizobium meliloti and the
SOEs from Campylobacter jejuni, Cupriavidus necator and Delftia
acidovorans cannot be used to deduce the structure of the SOE
encoded by these genes (Figure S1). In all of the above cases the SOE
Mo subunit encoding gene is followed by a gene encoding a
cytochrome c, but the subunit structure of the actual enzymes ranges
from the Mo and heme-containing SorAB heterodimer and the Mo-
containing SorT homodimer to the monomeric Cv. necator SOE (this
latter enzyme shows 61% identity to SorA from Starkeya novella).
Clearly, much more work is needed to understand what governs the
subunit association in bacterial SOEs, and whether the presence/
absence of additional redox centres has any functional implications as
significant differences are observed even between closely related
enzymes.

These structural differences highlight another important area for
future research, namely a clarification of the metabolic roles of the SO
family enzymes. So far these enzymes have been implicated in the
detoxification of sulfite arising from amino acid degradation in
vertebrates, production of hydrogen peroxide in plant peroxisomes
[87], sulfur chemolithotrophy [68,71], organosulfonate degradation
[37,45], internal sulfite respiration [67] and anaerobic respiration and
defence against immune system components in a human pathogen
[69]. Despite these very diverse roles in which SOEs have been
detected, so far no clear association of any of the known bacterial SOEs
with any of the above metabolic functions has been shown. For
example, although three SOEs from organosulfonate degrading
organisms have been purified or highly enriched, only two of these
share significant sequence similarities, while the third is 61% identical
to the heterodimeric SorAB enzyme found in the sulfur chemolitho-
troph St. novella, and no evidence for the association of any particular
type of SOE with organosulfonate degradation pathways was found
[45]. By the same token, no association between bacterial phyloge-
netic groupings and the prevalence of certain types of SOEs seems to
exist.

In view of the large gaps in our knowledge of the bacterial SO
family enzymes the development of a consistent and informative
naming system is crucial. At present a number of bacterial SOEs that
clearly differ from the heterodimeric SorAB SOE in their subunit
composition and possibly their catalytic and metabolic functions have
all been referred to as ‘SorA’. A much more systematic approach to
naming these enzymes should be adopted, where only enzymes that
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are clearly related in structure and function should carry the same
name, while enzymes of similar function but with a differing structure
should be given a distinct name to highlight these differences. Such an
approach has also been adopted in the case of e.g. the trimethylami-
neoxide reductases of E. coli, where enzymes with distinct subunit
compositions and cellular functions have been named TorABCD and
TorYZ [88,89], and accordingly, the recently discovered homodimeric
SOE from Sm. meliloti has been named SorT [45].

It is thus clear that we are only just beginning to understand the
full level of functional and structural diversity within the SO enzyme
family, and future work will no doubt provide important insights into
the evolution of SOE structure and function in adaptation to changing
metabolic requirements.
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