Author version of a manuscript published in FEMS Pathogens and Disease (2019),

DOI: 10.1093/femspd/ftz015

Supplementary Material

Metabolic analyses reveal common adaptations in two invasive *Haemophilus influenzae* strains

Noor Marian Muda¹, Marufa Nasreen¹, Rabeb Dhouib¹, Jennifer Hosmer¹, Julian Hill¹, Manish Mahawar^{1,2}, Horst Joachim Schirra¹, Alastair G. McEwan¹, Ulrike Kappler^{1*}

Target gene	Primer name	Primer sequence (5'-3')
pfkA zwf	HI_QPO_pfkA_F	CAA TTT CTG ATG CGA CGA TAT ATT C
	HI_QPO_pflA_R	TCG ACC GTT TAC GTG ATA CAT
	HI_QPO_zwf_F	GCC AGA ACC ATC ATA ATA GCC
	HI_QPO_zwf_R	GAA ACC GTT CAA AAC TTG CTC
pykA	HI_QPO_pykA_F	TTT GCT GCA TAC ATT GCA GAC AT
	HI_QPO_pykA_R	CAG TGG CAG CAAA TGG CTA G
pflA	HI_QPO_pflA_F	ATA CTG ATA GCG ATC ACG ATG TGC
	HI_QPO_pflA_R	CCC AAG GGT TTT CCA TTT ATG
aceF	HI_QPO_aceF_F	TTA TGT GAA GAC CGC AGT TAA AG
	HI_QPO_aceF_R	AAT TTA CTG AAA TCA ACT TTT GG
ackA	HI_QPO_ackA_F	GCG AAT ACC AAT TAA GTG AGC
	HI_QPO_ackA_R	CGT ATC GTT CAC GGT GGC GA
ldhA	HI_QPO_ldhA_F	TGA TAG TTT TCT GGC GTT GC
	HI_QPO_ldhA_R	TGA AAG GTT TTG GCA TGA ATA T
dldD	HI_QPO_dldD_F	AAG GTG TCT AAA CGA ACC GCA
	HI_QPO_dldD_R	CTA TGT TCG TCA AGT TGA TGA AG
lldD ndh	HI_QPO_IIdD_F	GCA AGA ATA GIT GGC ATT GAA AGT
	HI_QPO_IIdD_K	GCG TAA TGT GAG TGA TTT LGG ALLA GATT GG
	HI_QPO_ndh_Fv2	CAG CCA AAT ACA CTT ATT ACC AAA GAT GG
	HI_QPO_ndn_KV2	
nqrB	HI_QPO_nqrB_F	
	HI OPO avdA Ev2	
cydA	HI OPO cvdA Rv2	CGT AGT GGT ATC CGT GCT TAT GAA TTA TTT A
	HI OPO fdxG Ev2	
cydB	HI OPO fdxG R	ACG GCA AAT AAA CGT CCT ACG CCT
	HI_QPO_nrfA_F	TTC AAA GTC AGG GTG TTG TGC
nrfA	HI OPO nrfA R	TTG GGA TAA TGG TCA AAC CG
	HI OPO frdA F	CAG CAA ATA AAC CTT TGA TAC G
frdA	HI OPO frdA R	TGC TTA TGA AGG TGT AAA TCC A
napA	HI OPO napA F	CGG AAA TGC ACC CAA TTT TGT G
	HI QPO napA R	AAA CCG TGA TCG GCA AGT TCA AAA C
torZ	HI QPO torZ Fv2	CAA CGT CGT GAT TTT CTG AAA AAA ACA
	HI_QPO_torZ_Rv2	GCA GTC ACT ACC GTT TTC ATT TCA GCT
dmsA	HI_QPO_dmsA_F	CGA ACC TGA TGA TCA AGA TTA TAT G
	HI_QPO_dmsA_R	AGT AAA CTG TGG TAG CCG TTG
deoD	HI_QPO_DeoD_F	CCA AGC ATA TTA CGA ACA TTC GT
	HI_QPO_DeoD_R	CCT GAA GGT GCA TTT GCT GAT
gtp1	HI_QPO_gtp1_F	CAT ATT GAA ACC GTT TGT ATC GC
	HI_QPO_gtp1_R	CCY GTA TCA ACT AAA TCA TCT AC
gtp2	HI_QPO_gtp2_F	AAT GCA AAA TTT GTC ACT GTA TT
	HI_QPO_gtp2_R	ACA AAG GTT AAA CCT AAA TCC CA
guaA	HI_QPO_guaA_F	CAT TAT CGA AGA TGC CGT TGC
	HI_QPO_guaA_R	TGC CGA TAG CAC GGT GTA AAA G
guaB	HI_QPO_guaB_F	CCC TTA CTT TTG ACG ATG TTC TAC T
	HI_QPO_guaB_R	GTA TCC ATT GCT GCT GAA AGC AT
hpt	HI_QPO_hpt_F	CYT TTA TGT TTA TGG CGG ATA T
	I HI OPO hpt R	I IAI AIU GUU GIU UAA AIU III

Table S1: Oligonucleotide primers used in this study.

nadN	HI_QPO_NadN_F	GCG TCT ATT ACT CGT AAA ATT CCT
	HI_QPO_NadN_Rv2	AAG TGC TTT TTT ACG TTC ATC GCC AG
OMLP pcp	Hi_QPO_OMLP-pcpF	CAA TTG GCG GTG GTC GTG GT
	Hi_QPO_OMLP-pcpR	TTA ATT ACA AGT TCA GCA CCG TTT ACT TGA C
OMP26	HI_QPO_OMP26F	C TGG CGA TCT GGG TGA TGT TGA AA
	HI_QPO_OMP26R	AT CGC AAA AGT AAC CGC ACT TG
OMPP2	Hi_QPO_OMP2_F	TTC GTA TCT CCA GGT TTC CAA TAT GAA
	Hi_QPO_OMP2_R	TTG TTT GTG AAG TTT ATG ATC TAC ACC GAA TA
OMPP5	Hi_QPO_OMP5_F	TGC TGG TTA CAC TGA CCG TAT TGG TT
	Hi_QPO_OMP5_R	TTG CAG AGA TTG CGT CTG CTG C
OMPP6	Hi_QPO_OMP6_F	AGC AGC TGG CGT TGC ATT TAA ATA T
	Hi_QPO_OMP6_R	CTG TTG CTG ATC TTC AAC AAC GTT ACA A
gyrA	HI_QPO_gyrA_F	TTG GGC GTG CAT TAC CTG ACG TT
	HI_QPO_gyrA_R	CCC ACA ACA CGC GCT GAT TTT AC

Table S6 – Carbon substrates used by all three NTHi strains as determined using the Omnilog Phenotypic Microarray (Biolog). Data are shown in rel. absorbance values after normalization to the negative control well of the respective PM plate. The data are sorted from highest to lowest utilization rate for Hi2019.

	Hi2019	R2866	C188
Dihydroxyacetone	157	132	119
L-Lyxose	142	146	123
L-Lactic acid	132	153	123
D-Ribose	118	120	91
α -Hydroxybutyric acid	118	146	108
5-Keto-D-Gluconic acid	114	58	71
L-Arabinose	102	102	85
D-Xylose	98	101	79
D-Arabinose	98	60	68
Oxalomalic acid	96	91	116
Dihydroxyfumaric acid	87	127	118
2-Deoxy-D-Ribose	84	41	38
Glycolic acid	76	129	99
Palatinose	60	38	51
Uridine	58	119	124
D-Tagatose	53	19	33
Inosine	38	82	116
Pyruvic acid	35	86	71
D-Psicose	30	37	12
L-Rhamnose	27	38	40
L-Ornithine	19	16	46
Adenosine	18	67	85
Glucuronamide	17	26	9
D-Mannose	14	31	19
D-Glucose-6-Phosphate	12	50	53
D-Raffinose	12	1	2
α-D-Glucose	10	57	75
L-Malic acid	10	5	5
Gly-Pro	9	16	1
L-Fucose	9	11	22
Dulcitol	8	3	2
Thymidine	8	108	103
2'-Deoxyadenosine	8	46	35
Gentiobiose	7	4	4
Acetoacetic acid	6	6	22
D-Galacturonic acid	6	11	2
D-Galactose	2	9	34
α-Ketobutyric acid	2	37	21

Figure S1 Genomic comparison of *H. influenzae* strains R2866 and C188. **Panel A**: Mauve alignment of *H. influenzae* R2866, C188 and Hi2019 genomes to the HiRdKW20 reference genome. Contigs of the C188 genome were ordered using the R2866 genome as the reference before further alignments were carried out. **Panel B:** Comparison of the functional categories of unique genes found in strains C188 and R2866.

Figure S2 Comparison of growth rates in strains R2866, C188 and Hi2019 in response to changing oxygen tensions for Aerobic (AE) Microaerobic (MA) or Anaerobic (AN) growth. Adjusted p-values 2-way ANOVA: *** p=0.0007, ** p=0.0049-0.0029, * p=0.0184.

Figure S3 Co-infection assays showing populations of planktonic (**A**), total adherent (**B**) and intracellular (**C**) *H. influenzae* for NTHi strains 2019, C188 and R2866. The assays used the 16HBE14 cell line (bronchial epithelial cells) and at the 24h data point show reduced survival of the two invasive isolates under all conditions, including planktonic growth. Strain 2019 was used as a reference strain. Data were analysed using 2-Way ANOVA, adjusted p-values are Panel A: ** - p=0.0018-0.006, *** p=0.0008; Panel B: ** p=0.0062-0.0013, **** p<0.0001; Panel C: **** p<0.0001. Comparisons returning non-significant values are not shown. Data were compared both within the same timepoint (Hi2019, C188 R2866 after 4 or 24 hours) and for each strain between timepoints (e.g. Hi2019 after 4h vs after 24h).

