1,304 research outputs found

    A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL to analyze its schedulability by classical model checking (MC) and statistical model checking (SMC). The framework has been designed to enable three types of analysis: global SMC, global MC, and compositional MC. This allows an effective methodology including (1) quick schedulability falsification using global SMC analysis, (2) direct schedulability proofs using global MC analysis in simple cases, and (3) strict schedulability proofs using compositional MC analysis for larger state space. The framework is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This work presents a compositional approach for schedulability analysis of Distributed Integrated Modular Avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata in UPPAAL to verify its schedulability by model checking. However, direct model checking is infeasible due to the large state space. Therefore, we introduce the compositional analysis that checks each partition including its communication environment individually. Based on a notion of message interfaces, a number of message sender automata are built to model the environment for a partition. We define a timed selection simulation relation, which supports the construction of composite message interfaces. By using assume-guarantee reasoning, we ensure that each task meets the deadline and that communication constraints are also fulfilled globally. The approach is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MeTRiD 2018, arXiv:1806.09330. arXiv admin note: text overlap with arXiv:1803.1105

    Assessments of macroscopicity for quantum optical states

    Full text link
    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished

    Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    Get PDF
    We investigate the performance of a Kennedy receiver, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the σ^x\hat\sigma_x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the Kennedy receiver in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof of principle experiment shows that the Kennedy receiver can achieve a discrimination error surpassing homodyne detection

    An integrated source of broadband quadrature squeezed light

    Get PDF
    An integrated silicon nitride resonator is proposed as an ultra-compact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output squeezing spectrum for intra-cavity pump self-phase modulation. Subject to standard material loss and detection efficiencies, we find that the device holds promises for generating substantial quantum noise squeezing over a bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -7 dB squeezing is predicted for a pump power of only 50 mW.Comment: 23 pages, 12 figure

    Architecture and noise analysis of continuous variable quantum gates using two-dimensional cluster states

    Full text link
    Due to its unique scalability potential, continuous variable quantum optics is a promising platform for large scale quantum computing and quantum simulation. In particular, very large cluster states with a two-dimensional topology that are suitable for universal quantum computing and quantum simulation can be readily generated in a deterministic manner, and routes towards fault-tolerance via bosonic quantum error-correction are known. In this article we propose a complete measurement-based quantum computing architecture for the implementation of a universal set of gates on the recently generated two-dimensional cluster states [1,2]. We analyze the performance of the various quantum gates that are executed in these cluster states as well as in other two-dimensional cluster states (the bilayer-square lattice and quad-rail lattice cluster states [3,4]) by estimating and minimizing the associated stochastic noise addition as well as the resulting gate error probability. We compare the four different states and find that, although they all allow for universal computation, the quad-rail lattice cluster state performs better than the other three states which all exhibit similar performance
    • …
    corecore