An integrated silicon nitride resonator is proposed as an ultra-compact
source of bright single-mode quadrature squeezed light at 850 nm. Optical
properties of the device are investigated and tailored through numerical
simulations, with particular attention paid to loss associated with interfacing
the device. An asymmetric double layer stack waveguide geometry with inverse
vertical tapers is proposed for efficient and robust fibre-chip coupling,
yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of
the device through a full quantum noise analysis and derive the output
squeezing spectrum for intra-cavity pump self-phase modulation. Subject to
standard material loss and detection efficiencies, we find that the device
holds promises for generating substantial quantum noise squeezing over a
bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -7
dB squeezing is predicted for a pump power of only 50 mW.Comment: 23 pages, 12 figure