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Tomography of a displacement photon counter for discrimination of single-rail optical
qubits

Shuro Izumi,1 Jonas S. Neergaard-Nielsen,1 and Ulrik L. Andersen1

1 Center for Macroscopic Quantum States (bigQ), Department of Physics,
Technical University of Denmark, Building 309, 2800 Lyngby, Denmark

We investigate the performance of a detection strategy composed of a displacement operation and
a photon counter, which is known as a beneficial tool in optical coherent communications, to the
quantum state discrimination of the two superpositions of vacuum and single photon states corre-
sponding to the σ̂x eigenstates in the single-rail encoding of photonic qubits. We experimentally
characterize the detection strategy in vacuum-single photon two-dimensional space using quantum
detector tomography and evaluate the achievable discrimination error probability from the recon-
structed measurement operators. We furthermore derive the minimum error rate obtainable with
Gaussian transformations and homodyne detection. Our proof of principle experiment shows that
the proposed scheme can achieve a discrimination error surpassing homodyne detection.

PACS numbers:

I. INTRODUCTION

Discrimination of quantum states is an essential task
in various quantum information processing (QIP) appli-
cations. A discrimination error induced as a result of the
inherent quantum uncertainty of the interrogated quan-
tum states and/or an inadequate quantum measurement
strategy limits the performance of QIP. Therefore, the
discrimination of the quantum states with a minimum er-
ror probability is often required to accomplish the appli-
cation with optimal performance. Measurement in quan-
tum physics is represented by a positive operator valued
measure (POVM) and the POVM representation of the
optimal measurement that minimize the discrimination
error have been well studied [1]. However, the phys-
ical implementations of the optimal measurements are
not always trivial and designing the physical detection
structure by combining the available resources is another
important aspect of the quantum state discrimination.

One of the principal examples that requires a non-
trivial quantum measurement is the discrimination of the
superposition of the vacuum and the single photon states,
{|+〉 = (|0〉 + |1〉)/

√
2, |−〉 = (|0〉 − |1〉)/

√
2}. For QIP

associated with the single-rail optical qubit [2–5], the log-
ical bases {|0〉L = |0〉 , |1〉L = |1〉} can be easily discrim-
inated by an ideal photon counter. On the other hand,
discriminating the conjugate basis states {|+〉 , |−〉} re-
quires a more complicated procedure even though an
error-free discrimination is, in principle, possible owing to
the orthogonality of the states. If a Hadamard gate oper-
ation for the single-rail qubit were readily available, such
perfect discrimination would be straight-forward as the
gate converts |+〉 into |0〉 and |−〉 into |1〉 [6–8]. However,
a deterministic Hadamard gate requires very strong opti-
cal nonlinearities in order to create and annihilate single
photons and is therefore infeasible. It is therefore of inter-
est to explore physically feasible measurement that more
directly projects a quantum state onto the |±〉 basis.

In this article, we study the efficiency of using a sim-

ple displacement-based photon counter for the discrim-
ination of |+〉 and |−〉. Such a measurement proce-
dure, which we call a displacement photon counter here-
after, was originally proposed for binary phase shift key-
ing (BPSK) coherent states discrimination. Here it was
shown to provide a means of discriminating coherent
states that outperforms the standard homodyne detector
strategy in a certain photon number regime [9]. Since its
inception, a lot of attention has been devoted to the in-
vestigation of the receiver from both a theoretical [10–17]
and an experimental point of view [18–24]. In contrast,
very little work has been devoted to investigating the
potential of applying the displacement photon counter
to discriminate other important quantum states, such as
the vacuum and single photon superposition states.

We implement a displacement photon counter, charac-
terize it using coherent state quantum detector tomog-
raphy, and indirectly obtain the expected discrimination
error probability by analyzing the tomographically re-
constructed POVMs [25–32]. The characterization could
also be done by probing directly with the |±〉 states, but
preparing these with high quality is still technically chal-
lenging [33–35]. Reference [31] first demonstrated the to-
mography of the displacement photon counter (referred
to as weak homodyne detector), where a large detector
Hilbert space is considered. Furthermore, the displace-
ment photon counter was tomographically reconstructed
in a two-dimensional space spanned by the superposition
of the coherent state bases |C±〉 ∝ (|α〉 ± |−α〉) [32].
Though our detection strategy is composed of the same
resources, we restrict our focus to the two-dimensional
space spanned by the vacuum and the single photon bases
and the measurement is optimized in this space for mini-
mization of the discrimination error for the superposition
states.
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II. DISPLACEMENT PHOTON COUNTER

A schematic of the displacement photon counter is
shown in Fig. 1(a). It is composed of a displacement op-
eration followed by a photon counter. The phase space
displacement operation displaces |+〉 close to a vacuum
state and |−〉 to a finite amplitude state as shown in
Fig. 1(b) after which the two states can be approximately
distinguished by a photon counter: If the detector clicks,
we conclude that the measured state is |−〉 while the ab-
sence of a click indicates that the state |+〉 was measured.
For an ideal photon counter, the absence of a click is de-
scribed by the projection onto vacuum, |0〉〈0|. Therefore
the measurement operators (POVM elements) of the dis-
placement photon counter are given by

Π̂K
+ = D̂(β)†|0〉〈0|D̂(β),

Π̂K
− = Î − Π̂K

+, (1)

with D̂(β) = exp(βâ† − β∗â) being the displacement op-
eration with amplitude β. As the receiver is not optimal,
errors can occur: An incoming |−〉 state can be mistaken
for |+〉 and vice versa. The average discrimination error
is

PKe =
〈−| Π̂K

+ |−〉+ 〈+| Π̂K
− |+〉

2

=
1

2
+ Re[β]e−|β|

2

, (2)

where a priori probabilities are assumed to be equal. The
minimum average error probability provided by the dis-
placement photon counter is PKe ≈ 0.0711 with the dis-

placement amplitude β = −1/
√

2. This optimal displace-
ment value indicates that the displacement operation
should be carefully adjusted so as to minimize the error
probability rather than displacing |+〉 as close to the vac-

uum state as possible, which occurs for β = −(
√

5−1)/2.
It was shown that for BPSK signals, the minimum er-

ror probability under general Gaussian operations and
adaptive feedback control with homodyne detection can

FIG. 1: (a) Schematic of the displacement photon counter.
(b) Phase space representation and photon number distribu-
tion of the superposition states.

be achieved by a simple homodyne detection [14]. We
want to benchmark our detector against an optimal
Gaussian detector for discriminating |±〉. While the opti-
mal Gaussian detector for discriminating BPSK coherent
states is known [14], the optimal Gaussian detector for
discriminating |±〉 and thus the minimum Gaussian error
rate is not known to the best of our knowledge. In the fol-
lowing, we therefore consider a detection scheme consist-
ing of a general Gaussian unitary transformation followed
by a static homodyne detection and deduce the minimum
error rate which will be serving as the benchmark for our
detector. Any single mode Gaussian operation ÛG can
be decomposed as ÛG = D̂(α)R̂(φ)Ŝ(r)R̂(θ), where R̂(·)
and Ŝ(r) represent a phase rotation operator and a single
mode squeezing operator, respectively [36]. Therefore,
the POVM of a general Gaussian operation followed by
a static homodyne detection with the measurement out-

come x is described as {Π̂G
x = Û†G|x〉〈x|ÛG}x∈R. The ma-

trix representation of the POVM in the two-dimensional
space of interest is[

〈0| Π̂G
x |0〉 〈0| Π̂G

x |1〉
〈1| Π̂G

x |0〉 〈1| Π̂G
x |1〉

]
= N

[
1 εx̃

ε∗x̃ |ε|2 x̃2
]
, (3)

where

N =
sechr

√
π |1− ξ|2

exp [− sech2r
√
π |1− ξ|2

x̃2], (4)

ε =
ei(φ+θ)

√
2sechr

1− ξ
, (5)

ξ = e2iφ tanh r, (6)

x̃ = x−
√

2Re[α]. (7)

By comparing a posteriori probability distributions
Tr [〈±| Π̂G

x |±〉], we find that the homodyne outcomes
should be distributed to a binary decision according to
{Π̂G

+ =
∫∞
0

Π̂G
x dx̃, Π̂

G
− = Î − Π̂G

+} for Re[ε] ≥ 0 and op-
positely for Re[ε] < 0. The average error probability,
defined equivalently to Eq. (2), is then

PGe =
1

2
− 1√

2π

|cos (θ + φ)− cos (θ − φ) tanh r|√
1− 2 cos 2φ tanh r + tanh2 r

. (8)

The second term is maximized when {θ, φ} → {0, 0} and
for any r, i.e., the minimum error probability for the gen-
eral Gaussian unitary operations followed by the static
homodyne detection is achievable by a simple homodyne
detection and its error probability is PGe = 1

2 −
1√
2π
≈

0.101.

III. EXPERIMENT

In our experiment, we implement a displacement pho-
ton counter and characterize it using quantum detector
tomography where a large number of probes, selected
from a small set of coherent states that cover the Hilbert
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space of interest, are injected into the receiver. From
the distribution of detection outcomes, the POVM of the
measurement is reconstructed following a maximum like-
lihood (ML) procedure [37, 38]. The expected error rate
for discrimination of the superposition states is then es-
timated by

Pe =
〈−| Π̂ex

+ |−〉+ 〈+| Π̂ex
− |+〉

2
, (9)

where Π̂ex
± represent the experimentally reconstructed

POVM elements. The ML is dedicated to find the
POVMs that maximize the log-likelihood functional de-
fined as

L[{Π̂l}] =

L∑
l=1

M∑
m=1

fml ln Tr [ρ̂mΠ̂l], (10)

under the constraints for the POVMs, {Π̂l ≥
0,
∑L
l=1 Π̂l = Î}. L,M, fml indicate the number of

POVMs to be estimated, the number of probe states
and the experimentally obtained frequency of the out-
come l when probing with the state ρ̂m. The most likely
POVMs maximizing Eq. (10) for the acquired data can
be attained by recursively applying the following trans-
formation,

Π̂l = λ̂−1R̂lΠ̂lR̂lλ̂
−1, (11)

where

R̂l =

M∑
m=1

fml

Tr [ρ̂mΠ̂l]
ρ̂m, (12)

λ̂ = (

L∑
l=1

R̂lΠ̂lR̂l)
1/2. (13)

For the tomography in our experiment, we choose the
amplitudes of the probe states such that they can
be approximately represented in the four-dimensional
space spanned by photon numbers 0–3 and fully cover
the two-dimensional space of interest. Our measure-
ment provides binary outcomes {Π̂+, Π̂−} (L = 2) and
we prepare 16 different probe coherent states (M =
16) with 4 different mean photon numbers and phases
{π/4, 3π/4, 5π/4, 7π/4}.

FIG. 2: Experimental setup. PBS: polarization beam splitter,
APD: avalanche photo diode, PZT: piezo transducer, FPGA:
field programmable gate array, HVA: high voltage amplifier.

FIG. 3: Real part of the reconstructed POVMs of the dis-
placement photon counter, (a) Π̂ex

+ , (b) Π̂ex
− . The amplitude

of the displacement operation is set to β = −0.70. The yellow
bars indicate the truncated two-dimensional space.

Figure 2 shows our experimental setup. We use a con-
tinuous wave laser at 532 nm and the temporal mode of
the coherent probe states is defined as a 1 µs segment of
the continuous wave beam. The displacement operation
of the receiver can be physically implemented by com-
bining the optical state with a strong beam on a highly
transmitting beam-splitter. For this purpose, the beam is
split in two paths: In one path, the coherent probe states
are prepared. Their phase and amplitude are controlled
by a piezo-mounted mirror and a half-wave plate plus the
PBS1 polarizing beam-splitter, respectively. The other
path is used as the strong displacement beam. These
two beams are spatially combined with orthogonal po-
larizations at PBS1 and are made to interfere at the sub-
sequent PBS2. To effectively obtain a highly transmit-
ting beam-splitter operation, the polarization of the two
beams is rotated just slightly before PBS2. The displaced
probe state is guided into a single mode fiber and de-
tected by an avalanche photo diode (APD). We develop
a field programmable gate array (FPGA) to count the
electric signals from the APD. The individual clicks (or
non-clicks) are the outcomes of the state measurements,
while the overall count rate is used for feedback control
of the relative phase between probe and displacement
through an applied voltage on the piezo mirror. The op-
tical losses due to fiber coupling and non-unit detection
efficiency of the APD with a total effective efficiency of η
cause a degradation of the performance of the displace-
ment photon counter. However, the optical losses in our
experiment can be compensated by rescaling the ampli-
tude of the coherent state |√ηα〉 → |α〉 since the coher-
ent state remains a pure state and the phase is invariant
under linear losses. We are thus characterizing the per-
formance of an idealized, perfectly efficient receiver since
we are interested in the ultimately achievable discrimina-
tion ability. In practice, this loss compensation happens
automatically due to our calibration of the probe state
and displacement amplitudes through the observed pho-
ton count rates.

The real parts of the reconstructed POVM elements
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FIG. 4: Achievable error probability calculated from the ex-
perimentally reconstructed POVMs (red points), the theoret-
ical prediction of the error probability for the displacement
photon counter (black curve), the theoretical prediction in-
cluding the observed non-perfect visibility (thin blue curve),
and the homodyne detection (horizontal black line).

are depicted in Fig. 3, where the amplitude of the dis-
placement operation is set to β = −0.70± 0.02. 5× 104

experimental data are acquired for each probe state. The
imaginary parts of the off diagonal elements in the recon-
structed POVM that originate from a misaligned phase
of the displacement operation are negligibly small. The
original POVM is reconstructed in the four-dimensional
space in the photon number basis and truncated to the
two-dimensional space in order to evaluate the error
probability. The fidelity between the POVM elements
of the displacement photon counter given in Eq. (1)
and the experimentally reconstructed ones with the two-
dimensional truncation can be defined as [31],

F± = ( Tr [(

√
Π̂K
±Π̂ex
±

√
Π̂K
±)1/2])2/( Tr [Π̂ex

± ] Tr [Π̂K
±]).

(14)
Both fidelities surpass 99.5%.

In Fig. 4, we evaluate the achievable error probability
obtained from the experimentally realized measurement.
We examine 5 displacement amplitude conditions. The
average values and error bars are obtained from 5 in-
dependent procedures. The experimental result agrees
well with the theoretical prediction (black curve) and
beats the performance of the homodyne detection (black
horizontal line) for an optimized amplitude of the dis-

placement operation. The agreement is even better if
the model takes into account the visibility imperfection
of the displacement operation and the dark counts of the
APD (blue curve), which are measured to be 99.1% and
310Hz respectively.

IV. CONCLUSION

We applied the displacement photon counter, which is
known as a near optimal measurement strategy for the
BPSK coherent states discrimination, to the discrimina-
tion of equally weighted superpositions of the vacuum
and the single photon states – the σ̂x eigenstates in the
single-rail qubit encoding. We experimentally realized
the displacement photon counter and characterized our
measurement by quantum detector tomography with co-
herent probe states. The achievable error probability was
indirectly evaluated with the reconstructed POVMs. Our
proof-of-principle experiment showed that the displace-
ment photon counter provides a better error probability
than the homodyne detection by optimizing the displace-
ment amplitude.

An interesting remaining issue is a physical imple-
mentation of the projection measurement that can per-
fectly discriminate the superposition states. Indeed, as
shown in Ref. [13], an error-free discrimination of the
superposition states is achievable, not only for equally
weighted but also for arbitrary orthogonal superposi-
tions, by applying an infinitely fast electrical feedback
operation to the displacement photon counter, i.e., the
Dolinar receiver. Such a two-dimensional projection mea-
surement is an essential tool for quantum information
processing with single-rail optical qubits where an ar-
bitrary two-dimensional projector in the qubit Hilbert
space is required. Although there still exists a gap be-
tween the displacement photon counter and the ideal pro-
jection measurement, our work shows the potential of
well-established techniques for the single-rail qubits dis-
crimination.
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