55 research outputs found
Ordered states in the disordered Hubbard model
The Hubbard model is studied in which disorder is introduced by putting the
on-site interaction to zero on a fraction f of (impurity) sites of a square
lattice. Using Quantum Monte Carlo methods and Dynamical Mean Field theory we
find that antiferromagnetic long-range order is initially enhanced at
half-filling and stabilized off half-filling by the disorder. The Mott-Hubbard
charge gap of the pure system is broken up into two pieces by the disorder: one
incompressible state remains at average density n=1 and another can be seen
slightly below n=1+f. Qualitative explanations are provided.Comment: 17 pages, including 8 figures. Paper for Festschrift in honor of Hans
van Leeuwen's 65th birthda
Metal--Insulator Transitions in the Falicov--Kimball Model with Disorder
The ground state phase diagrams of the Falicov--Kimball model with local
disorder is derived within the dynamical mean--field theory and using the
geometrically averaged (''typical'') local density of states. Correlated metal,
Mott insulator and Anderson insulator phases are identified. The
metal--insulator transitions are found to be continuous. The interaction and
disorder compete with each other stabilizing the metallic phase against
occurring one of the insulators. The Mott and Anderson insulators are found to
be continuously connected.Comment: 6 pages, 7 figure
Conducting phase in the two-dimensional disordered Hubbard model
We study the temperature-dependent conductivity and spin
susceptibility of the two-dimensional disordered Hubbard model.
Calculations of the current-current correlation function using the Determinant
Quantum Monte Carlo method show that repulsion between electrons can
significantly enhance the conductivity, and at low temperatures change the sign
of from positive (insulating behavior) to negative (conducting
behavior). This result suggests the possibility of a metallic phase, and
consequently a metal-insulator transition,in a two-dimensional microscopic
model containing both interactions and disorder. The metallic phase is a
non-Fermi liquid with local moments as deduced from a Curie-like temperature
dependence of .Comment: 4 pages; 4 postscript figures; added (1) a new figure showing
temperature dependence of spin susceptibility; (2) more references. accepted
for publication in Phys. Rev. Let
Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet
The interplay of disorder and spin-fluctuation effects in a disordered
antiferromagnet is studied. In the weak-disorder regime (W \le U), while the
energy gap decreases rapidly with disorder, the sublattice magnetization,
including quantum corrections, is found to remain essentially unchanged in the
strong correlation limit. Magnon energies and Neel temperature are enhanced by
disorder in this limit. A single paradigm of disorder-enhanced delocalization
qualitatively accounts for all these weak disorder effects. Vertex corrections
and magnon damping, which appear only at order (W/U)^4, are also studied. With
increasing disorder a crossover is found at W \sim U, characterized by a rapid
decrease in sublattice magnetization due to quenching of local moments, and
formation of spin vacancies. The latter suggests a spin-dilution behavior,
which is indeed observed in softened magnon modes, lowering of Neel
temperature, and enhanced transverse spin fluctuations.Comment: 12 pages, includes 8 postscript figures. To appear in Physical Review
B. References adde
Constrained-path quantum Monte Carlo simulations of the zero-temperature disordered two-dimensional Hubbard model
We study the effects of disorder on long-range antiferromagnetic correlations
in the half-filled, two dimensional, repulsive Hubbard model at T=0. A mean
field approach is first employed to gain a qualitative picture of the physics
and to guide our choice for a trial wave function in a constrained path quantum
Monte Carlo (CPQMC) method that allows for a more accurate treatment of
correlations. Within the mean field calculation, we observe both Anderson and
Mott insulating antiferromagnetic phases. There are transitions to a paramagnet
only for relatively weak coupling, U < 2t in the case of bond disorder, and U <
4t in the case of on-site disorder. Using ground-state CPQMC we demonstrate
that this mean field approach significantly overestimates magnetic order. For
U=4t, we find a critical bond disorder of Vc = (1.6 +- 0.4)t even though within
mean field theory no paramagnetic phase is found for this value of the
interaction. In the site disordered case, we find a critical disorder of Vc =
(5.0 +- 0.5)t at U=4t.Comment: Revtex, 13 pages, 15 figures. Minor changes to title and abstract,
discussion and references added, figures 5, 6, 8, 9 replaced with easier to
read version
Particle-Hole Symmetry and the Effect of Disorder on the Mott-Hubbard Insulator
Recent experiments have emphasized that our understanding of the interplay of
electron correlations and randomness in solids is still incomplete. We address
this important issue and demonstrate that particle-hole (ph) symmetry plays a
crucial role in determining the effects of disorder on the transport and
thermodynamic properties of the half-filled Hubbard Hamiltonian. We show that
the low-temperature conductivity decreases with increasing disorder when
ph-symmetry is preserved, and shows the opposite behavior, i.e. conductivity
increases with increasing disorder, when ph-symmetry is broken. The Mott
insulating gap is insensitive to weak disorder when there is ph-symmetry,
whereas in its absence the gap diminishes with increasing disorder.Comment: 4 pages, 4 figure
Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures
The single band Hubbard and the two band Periodic Anderson Hamiltonians have
traditionally been applied to rather different physical problems - the Mott
transition and itinerant magnetism, and Kondo singlet formation and scattering
off localized magnetic states, respectively. In this paper, we compare the
magnetic and charge correlations, and spectral functions, of the two systems.
We show quantitatively that they exhibit remarkably similar behavior, including
a nearly identical topology of the finite temperature phase diagrams at
half-filling. We address potential implications of this for theories of the
rare earth ``volume collapse'' transition.Comment: 4 pages (RevTeX) including 4 figures in 7 eps files; as to appear in
Phys. Rev. Let
Pseudogap effects induced by resonant pair scattering
We demonstrate how resonant pair scattering of correlated electrons above T_c
can give rise to pseudogap behavior. This resonance in the scattering T-matrix
appears for superconducting interactions of intermediate strength, within the
framework of a simple fermionic model. It is associated with a splitting of the
single peak in the spectral function into a pair of peaks separated by an
energy gap. Our physical picture is contrasted with that derived from other
T-matrix schemes, with superconducting fluctuation effects, and with preformed
pair (boson-fermion) models. Implications for photoemission and tunneling
experiments in the cuprates are discussed.Comment: REVTeX3.0; 4 pages, 4 EPS figures (included
Disorder and Impurities in Hubbard-Antiferromagnets
We study the influence of disorder and randomly distributed impurities on the
properties of correlated antiferromagnets. To this end the Hubbard model with
(i) random potentials, (ii) random hopping elements, and (iii) randomly
distributed values of interaction is treated using quantum Monte Carlo and
dynamical mean-field theory. In cases (i) and (iii) weak disorder can lead to
an enhancement of antiferromagnetic (AF) order: in case (i) by a
disorder-induced delocalization, in case (iii) by binding of free carriers at
the impurities. For strong disorder or large impurity concentration
antiferromagnetism is eventually destroyed. Random hopping leaves the local
moment stable but AF order is suppressed by local singlet formation. Random
potentials induce impurity states within the charge gap until it eventually
closes. Impurities with weak interaction values shift the Hubbard gap to a
density off half-filling. In both cases an antiferromagnetic phase without
charge gap is observed.Comment: 16 pages, 9 figures, latex using vieweg.sty (enclosed); typos
corrected, references updated; to appear in "Advances in Solid State
Physics", Vol. 3
Correlated hopping of electrons: Effect on the Brinkman-Rice transition and the stability of metallic ferromagnetism
We study the Hubbard model with bond-charge interaction (`correlated
hopping') in terms of the Gutzwiller wave function. We show how to express the
Gutzwiller expectation value of the bond-charge interaction in terms of the
correlated momentum-space occupation. This relation is valid in all spatial
dimensions. We find that in infinite dimensions, where the Gutzwiller
approximation becomes exact, the bond-charge interaction lowers the critical
Hubbard interaction for the Brinkman-Rice metal-insulator transition. The
bond-charge interaction also favors ferromagnetic transitions, especially if
the density of states is not symmetric and has a large spectral weight below
the Fermi energy.Comment: 5 pages, 3 figures; minor changes, published versio
- …