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We study the temperature-dependent conductivity o (7)) and spin susceptibility x(7) of the two-
dimensional disordered Hubbard model. Calculations of the current-current correlation function using a
guantum Monte Carlo method show that repulsion between electrons can significantly enhance the con-
ductivity, and at low temperatures change the sign of do/dT from positive (insulating behavior) to
negative (conducting behavior). This result suggests the possibility of a metallic phase, and conse-
quently a metal-insulator transition, in a two-dimensional microscopic model containing both interac-
tions and disorder. The metallic phase is a non-Fermi liquid with local moments as deduced from x (7).

PACS numbers: 71.10.Fd, 71.30.+h, 72.15.Rn

When electrons are confined to two spatial dimensions
in a disordered environment, common understanding un-
til recently was that the electronic states would always be
localized and the system would therefore be an insulator.
This idea is based on the scaling theory of localization
[1] for noninteracting electrons and corroborated by subse-
guent studies using renormalization group (RG) methods
[2]. The scaling theory highlights the importance of the
number of spatial dimensions and demonstrates that while
in three dimensions for noninteracting electrons there ex-
istsatransition from ametal to an Anderson insulator upon
increasing the amount of disorder; asimilar metal-insulator
transition (MIT) is not possible in two dimensions.

The inclusion of interactions into the theory has been
problematic, certainly when both disorder and interactions
are strong and perturbative approaches break down. Fol-
lowing the scaling theory the effect of weak interactionsin
the presence of weak disorder was studied by diagrammatic
techniques and found to increase the tendency to localize
[3]. Subsequent perturbative RG calculations, including
both electron-electron interactions and disorder, found in-
dications of metallic behavior, but also, for the case with-
out amagnetic field or magnetic impurities, found runaway
flows to strong coupling outside the controlled perturba-
tive regime and therefore were not conclusive [4,5]. The
results of such approaches therefore have not changed the
widely held opinion that in two dimensions (2D) the MIT
does not occur.

The situation changed dramatically with the recent trans-
port experiments on effectively 2D electron systems in
silicon metal-oxide-semiconductor field-effect transistors
(MOSFETS) which have provided surprising evidence that
aMIT canindeed occur in 2D [6]. Inthese experimentsthe
temperature dependence of the conductivity og. changes
from that typical of an insulator (decrease of og4. upon
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lowering T') at lower density to that typical of a conductor
(increase of o4. upon lowering T) as the density is in-
creased above acritical density. The fact that the data can
be scaled onto two curves (one for the metal and onefor the
insulator) is seen as evidence for the occurrence of a quan-
tum phase transition with carrier density n as the tuning
parameter. The possibility of such a transition has stimu-
lated alarge number of further experimental [7,8] and also
theoretical investigations [9,10], including proposals that
a superconducting state is involved [11]. Explanationsin
terms of trapping of electrons at impurities, i.e., not requir-
ing a quantum phase transition, have aso been put forward
[12]. While there is no definitive explanation of the phe-
nomena yet, it is likely that electron-electron interactions
play an important role.

The central question motivated by the experiments is:
Can electron-electron interactions enhance the conductiv-
ity of a 2D disordered electron system, and possibly lead
to a conducting phase and a metal-insulator transition? It
isthis question that we address by studying the disordered
Hubbard model which contains both relevant ingredients:
interactions and disorder. While the Hubbard model does
not include the long range nature of the Coulomb repul-
sion, studying the simpler model of screened interactions
is an important first step in answering the central qualita-
tive question posed above. We use quantum Monte Carlo
simulation techniques which enable us to avoid the limi-
tations of perturbative approaches (while of course being
confronted with others). We mention that recent studies
using very different techniques from ours have indicated
that interactions may enhance conductivity: two interact-
ing particles instead of one in a random potential have a
delocalizing effect [13], and weak Coulomb interactions
were found to increase the conductance of spinless elec-
tronsin (small) strongly disordered systems [14].
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The disordered Hubbard model that we study is de-
fined by

H = — Z [ijC;'r,,-Cj”— + Uzanl’ljl — ,LLZI/ZJ'(,—, (l)
1,],0 ] ],

where c;, is the annihilation operator for an electron at
site j with spin o. t;; is the nearest neighbor hopping
integral, U is the on-site repulsion between electrons of
opposite spin, w is the chemical potential, and n;, =
c;f,,c jo 1S the occupation number operator. Disorder is
introduced by taking the hopping parameters ¢; from
a probability distribution P(z;;) = 1/A for t;; € [1 —
A/2,1 + A/2], and zero otherwise. A is a measure for
the strength of the disorder [15].

We use the determinant quantum Monte Carlo (QMC)
method, which has been applied extensively to the Hub-
bard model without disorder [16]. While disorder and
interaction can be varied in a controlled way and strong
interaction is treatable, QMC is limited in the size of the
lattice, and the sign problem restricts the temperatures
which can be studied. The sign problem is minimized by
choosing off-diagonal rather than diagonal disorder, as at
least at half filling ((n) = 1) thereisno sign probleminthe
former case, and consequently simulations can be pushed
to significantly lower temperatures. For results away from
half filling we choose (n) = 0.5 where the sign problem is
less severe compared to other densities [16]. Also, inter-
estingly, the sign problem is reduced in the presence of
disorder [15].

The quantity of immediate interest when studying a
possible metal-insulator transition is the conductivity and
especially its T dependence. By the fluctuation-dissipation
theorem o, is related to the zero-frequency limit of the
current-current correlation function. A complication of
the QMC simulations is that the correlation functions
are obtained as a function of imaginary time. To avoid
a numerical analytic continuation procedure to obtain
frequency-dependent quantities, which would require
Monte Carlo data of higher accuracy than produced in
the present study, we employ an approximation that was
used and tested before in studies of the superconductor-
insulator transition in the attractive Hubbard model [17].
This approximation is vaid when the temperature is
smaller than an appropriate energy scale in the problem.
Additional checks and applicability to the present problem
are discussed below. The approximation allows o4, to be
computed directly from the wave vector q- and imaginary
time rt-dependent current-current correlation function
Avx(q,7):

Ode =

52

;Axx(q=0’7=:8/2) (2)
Here B = l/T, Axx(q’ T) = <jx(q’ T)jx(_qs0)>1 and
jx(q,7), the q,7-dependent current in the x direc-
tion, is the Fourier transform of j,(€) = i >, te+ze X

(C}wb%,o-cf(r - C;rgcfﬁc,g) (see also Ref. [18]).

Asatest for our conductivity formula (2) wefirst present
resultsin Fig. 1(a) for 4. (T) at half filling for U = 4 and
various disorder strengths A. The behavior of the con-
ductivity shows that as the temperature is lowered below
a characteristic gap energy the high T “metallic” behavior
crosses over to the expected low T Mott insulating behav-
ior for all A, thereby providing a reassuring check of for-
mula (2) and our numerics.

In Fig. 1(b), we show o4.(T) for a range of disorder
strengths at density (n) = 0.5 and U = 4. The figure
displays a striking indication of a change from metallic
behavior at low disorder to insulating behavior above a
critical disorder strength, A, = 2.7. If this persists to
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FIG. 1. Conductivity o4, as a function of temperature 7 for
various values of disorder strength A a U = 4 for (a) half
filling ((n) = 1) and (b) (n) = 0.5. Calculations are performed
on an 8 X 8 sguare lattice; data points are averages over four
realizations for a given disorder strength.
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T = 0 and in the thermodynamic limit, it would describe a
ground state metal-insulator transition driven by disorder.

In order to obtain a more precise understanding of the
role of interactions on the conductivity, we compare in
Fig. 2 the results of Fig. 1(b) with the disordered non-
interacting o [19]. The comparison is made at strong
enough disorder A = 2.0 such that the localization length
is less than the lattice size and the noninteracting sys
tem is therefore insulating with doo/dT > 0 at low T.
Interactions are found to have a profound effect on the
conductivity: in the high-temperature metallic region, in-
teractions slightly reduce o compared to the noninteracting
oo behavior. On the other hand in the low-temperature
“insulating” region of o the data show that upon turn-
ing on the Hubbard interaction the behavior is completely
changed with do/dT < 0, characteristic of metallic be-
havior. Thisis the regime of interest for the MIT.

In order to ascertain that the phase produced by repulsive
interactions at low T is not an insulating phase with a
localization length larger than the system size but a true
metallic phase we have studied the conductivity response
for varying lattice sizes. Wefind amarkedly different size
dependence for the U = 0 insulator and the U = 4 metal,
resulting in a confirmation of the picture given above. For
U = 0, the conductivity on alarger (12 X 12) system is
lower than that on a smaller (8 X 8) system (see Fig. 2),
consistent with insulating behavior in the thermodynamic
limit, whereas for U = 4 the conductivity on the larger
(8 X 8) system is higher than that on the smaller (4 X 4)
system (data not shown), indicative of metallic behavior.
Thus the enhancement of the conductivity by repulsive
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FIG. 2. Conductivity o4 as afunction of temperature T com-
paring U = 4 and U = 0 at (n) = 0.5 and disorder strength
A = 2.0. Data points are averages over many realizations for
this disorder strength (see text). Error bars are determined by
the disorder averaging and not the Monte Carlo simulation.
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interactions becomes more pronounced with increased
lattice size [20].

Concerning finite-size effects for the noninteracting sys-
tem we note that at lower values of A, where the local-
ization length exceeds the lattice size, oy shows metallic
behavior which is diminished upon turning on the interac-
tions[21]. Based on our analysis above, we would predict
that at low enough T and large enough lattice size the con-
ductivity curves for the noninteracting oy and interacting
o crosswith o > o at sufficiently low T.

To obtain information on the spin dynamics of the elec-
trons and becauseit isa quantity often discussed in connec-
tion with the localization transition, we also compute the
spin susceptibility y as afunction of T [through x(T) =
BSo(T) where Sy is the magnetic structure factor at wave
vector q = 0]. Figure 3 showstwo things: (i) x(T) isen-
hanced by interactions with respect to the noninteracting
case (at fixed disorder strength), and (ii) starts to diverge
when T is lowered, both on the metallic (A = 2) and in-
sulating (A = 4) sides of the alleged transition. This is
in agreement with experimental and theoretical work on
phosphorus-doped silicon, where a (3D) MIT is known to
occur and the behavior is explained by the existence of lo-
cal moments[22], and a so with diagrammatic work on 2D
disordered, interacting systems [23].

In order to definitively establish the existence of a pos-
sible quantum phase transition in the disordered Hubbard
model requires the following: (i) extending the present
dataat T = 0.1 = W/80, where W is the noninteracting
bandwidth, to lower T, which is however difficult because
of the sign prablem, (ii) a more detailed anaysis of the
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FIG. 3. Spin susceptibility y as a function of temperature T
at (n) = 0.5 comparing interaction strengths U = 0, 2, 4 and
disorder strengths A = 2, 4. Calculations are performed on
8 X 8 square lattices; error bars are from disorder averages
over up to eight realizations.
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scaling behavior in both linear dimension and some scaled
temperature, (iii) a more accurate anaytic continuation
procedure to extract the conductivity. The condition for
the validity of the approximate formula (2) for o4.(T),
requires that T be less than an appropriate energy scale
which is fulfilled within the two phases, but breaks down
close to a quantum phase transition where the energy scale
vanishes.

In summary, we have studied the temperature-dependent
conductivity o (T) and spin susceptibility y(7') of amodel
for two-dimensional electrons containing both disorder and
interactions. We find that the Hubbard repulsion can en-
hance the conductivity and lead to a clear change in sign
of do/dT. More significantly, from a finite-size scal-
ing analysis we demonstrate that repul sive interactions can
drive the system from one phase to a different phase. We
find that o (T") has the opposite behavior as a function of
system size in the two phases indicating that the transi-
tion is from a localized insulating to an extended metal-
lic phase. The x(T) data further suggest the formation
of an unusual metal, a non-Fermi liquid with local mo-
ments. While the smplicity of the model we study pre-
vents any quantitative connection to recent experiments on
Si-MOSFETS, there is nevertheless an interesting qualita-
tive similarity between Fig. 1(b) and the experiments.
Varying the disorder strength A at fixed carrier density (n),
as in our calculations, can be thought of as equivalent to
varying carrier density at fixed disorder strength, asin ex-
periments, since in ametal-insulator transition one expects
no qualitative difference between tuning the mobility edge
through the Fermi energy (by varying A) and vice versa
(by varying (n)). Our work then suggests that electron-
electron interaction induced conductivity plays a key role
in the 2D metal-insulator transition.
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